タグ: rAAV-production

  • [Bio-Edu] Surfactant – PF-68, PS80 の添加は常識 – 凝集の抑制 – ID12904 [2021/06/19]

    [Bio-Edu] Surfactant – PF-68, PS80 の添加は常識 – 凝集の抑制 – ID12904 [2021/06/19]

    界面活性剤

    タンパク質の凝集抑制には、古くから界面活性剤 (surfactant)の添加で改善されることが知られている。いろいろな界面活性剤の研究実績が積まれて、現在では、プルロニック (Pluronic)とポリソルベート (Polysorbate)の2種類が、その役割を代表するようになった。抗体医薬品では、殆どがPolysorbate 80が使用されるまでになっており、添加することは常識的なナレッジである。

    凝集と一口で表現しているが、実は、「Aggregate」、「Visible Particle」及び「Sub-visible Particle」に分けて考えられることが多い。凝集抑制剤の効果は、それぞに得意な対象がある。昔は、粒子サイズを測定することができなかったが、今では、目に目えないサイズの粒子を観測できる装置があり、今では、科学的に凝集抑制剤の評価が可能となった。

    • Pluronic
    • Polysorbate

    Pluronic F-68 (ploxamer 188)

    F-68は、凝集抑制に多用される

    特許において、0.001% PF-68の添加することは、常識のようで有る

    – AAVベクターの凝集を防ぐための組成物およびその方法 (特許, 2012)
    【課題】凝集なく、ビリオン、特にAAV(アデノ随伴ウイルス)ビリオンの高濃度ストック溶液を調製するための組成物および方法の提供。

    【解決手段】ビリオン調製物におけるビリオンの凝集を防ぐ方法であって、少なくとも約200mMのイオン強度を達成するためにビリオン調製物に1種類以上の賦形剤を添加することを含む、方法。高いイオン強度および適度な浸透圧のこの組合せは、クエン酸ナトリウムのような高い価数の塩を用いて達成される。

    https://patents.google.com/patent/JP2014111625A/ja

    AAV Purification by Iodixanol Gradient Ultracentrifugation – イオジキサノール勾配超遠心によるAAV精製

    https://www.addgene.org/protocols/aav-purification-iodixanol-gradient-ultracentrifugation/

    その他情報

    製品情報、毒性関連、分析手法など。

    • molecular weight : 8.4kDa (approx.)
    • 製品
      Non-ionic surfactant (100x) – Thermo Fisher Scientific –
      https://www.thermofisher.com/order/catalog/product/24040032
    • 哺乳類細胞培養液中の界面活性剤プルロニックF-68の測定のためのアッセイの開発 (1998)
      • 動物細胞培養液中のプルロニックF-68の比色測定法
      • 以前に肝臓組織でプルロニックを測定するために開発された「チオシアン酸コバルト」との複合体の形成に基づく
      • 複合体の吸光度を328 nmで測定にり感度アップ
      • 複合体を酢酸エチルで洗浄 → アッセイの再現性が向上
      • 培養液の未知の成分によって引き起こされる干渉を低減には、臨界量のエタノールの添加が必要
      • 無血清培地でのプルロニック濃度が0.01から0.2%(w / v)の間で直線的
      • 0.01%(w / v)の低い検出レベルでは、相関係数(R2)は0.998
      • 培地中血清の存在は、感度を低下させるが、0.04から0.16%(w / v)プルロニックまで直線的
      • https://pubmed.ncbi.nlm.nih.gov/9735146/
    • F-68は、試験した範囲の用量で末梢運動、感覚、または動機付けの影響を混乱させることなく、神経伝達物質の取り込みと放出を減らし、ラットに学習と記憶障害を引き起こす
      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC311314/
    • 細胞培養の攪拌翼により生じる剪断力から細胞を保護、トリプシン損傷細胞を修復し膜の多孔性の減少、細胞付着を低減する :
      Pluronic Enhances the Robustness and Reduces the Cell Attachment of Mammalian Cells –
      https://www.researchgate.net/publication/5523814_Pluronic_Enhances_the_Robustness_and_Reduces_the_Cell_Attachment_of_Mammalian_Cells/link/09e414fa0ed97088ed000000/download
    • プルロニック F-68の分析方法 (2010):
      Determination of Pluronic F-68 in High Protein Matrices by HPLC-RAM-ELSD, – Helen Chung, Melissa Khor, and Jinshu Qiu* Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320
      http://imtakt.com/jp/Support/UserReport/@USA-Amgen/2010-05-18_HPLC_2010_Poster_v3.pdf
      • Cadenza HS-C18 (150 x 3.0 mm, 3μ)
      • restricted access media (RAM) 固定層
      • HPLC system
        • pump, 0.4 mL/min
        • autosampler
        • column switching valve
        • evaporative light scattering detector (ELSD)
      • 0.1% acetic acid (HAc)
      • 0.1% HAc in acetonitrile
      • gradient elution
        • 0 – 5.0 min : 0% B
        • 5.1 – 10.0 min : 10% B
        • 10.1 – 15.0 min : 45% B
        • 15.1 – 25.0 min : 100% B
        • 25.1 – 35.0 min : 0% B
      • Proteins eluted in the void volume
      • while PF-68 eluted at 14.5 min
      • sensitivity (10 mg/L quantitation limit)

    Polysorbate

    特にPolysorbate 80は、日本油脂から高純度品が市販されたことで、多くのバイオロジクスで使用されている。

    molecular weight : 1,310 Da

    Information for the package leaflet regarding polysorbates used as excipients in medicinal products for human use – EMA/CHMP 2018

    https://www.ema.europa.eu/en/documents/scientific-guideline/draft-information-package-leaflet-regarding-polysorbates-used-excipients-medicinal-products-human_en.pdf

    BIoPharm International 22(6) 32-48 Best Practices for Formulation and Manufacturing of Biotech Drug Products

    https://www.researchgate.net/publication/279558359_Best_Practices_for_formulation_and_manufacturing_of_biotech_drug_products

    Concise Review: Considerations for the Formulation, Delivery and Administration Routes of Biopharmaceuticals

    https://www.heighpubs.org/hjb/abb-aid1004.php

    参考 UF/DF関連

    Control of Protein Particle Formation During Ultrafiltration/Diafiltration Through Interfacial Protection (2014)

    この研究は、限外濾過/ダイアフィルトレーション(UF / DF)中のタンパク質粒子形成のメカニズムを調査し、攪拌がタンパク質界面の吸着と脱着を促進することにより粒子形成を促進することを発見しました。導電率が低く、界面活性剤が存在しているため、小規模の攪拌試験では粒子形成のレベルが低下し、ポンプとUF / DFでも同じ傾向が見られました。ポリソルベート80(PS80)およびヒドロキシプロピル-β-シクロデキストリン(HPβCD)は、UF / DFでの粒子形成をそれぞれ15倍および4倍減少させました。構造安定性、コロイド安定性、および表面張力の測定により、PS80がタンパク質界面の吸着を防ぐことで粒子形成を防ぎ、低導電率がタンパク質のコロイド安定性を改善し、HPβCDの作用メカニズムが不明であることを示しました。

    Control of Protein Particle Formation During Ultrafiltration/Diafiltration Through Interfacial Protection
    編集履歴
    2020/04/07 はりきり(Mr)
    2020/05/26 追記 (PF-68の事例)、誤記訂正
    2021/06/19,追記 (Aggregate, Visible particle, Sub-visible particleについて少し解説)
  • [rAAV] rAAVのUSP/DSP – 製造方法 – emptyとfullの比重, 2015 – SM[2019/10/05]

    [rAAV] rAAVのUSP/DSP – 製造方法 – emptyとfullの比重, 2015 – SM[2019/10/05]

    rAAVの製造

    2015年時点のrAAV製造(Upstream, Downstream)に関するReview文献をもとに解説します.

    基本情報

    目的の遺伝子をAAVに包含させて作ったAAVベクターが、遺伝子治療薬になります。ここで、目的の遺伝子がAAVの殻に含まれていれば良いのですが、何も含まれない空の粒子も確率的には作られてしまいます。空の粒子をEmptyと言います。一途方の粒子をFullと言います。

    ウイルスを精製するには、従来から遠心、特に超遠心を使われてきました。精製目的のウイルスでも、中に何も入っていない殻と目的遺伝を含む粒子を分別精製するためにも、超遠心が使われます。手技も固まっており簡単なので、よく使われます。

    粒子の比重

    参考文献から、AAVの比重 (密度) の情報を抽出しました。

    • Full : 1.40 g/cm3
    • Empty ; 1.32 g/cm3
    • 可溶性タンパク質 : 1.3 g/cm3
    • 核酸 : 1.7 ~ 2.0 g/cm3 (24, 48)

    参考文献

    1. Overview of current scalable methods for purification of viral vectors – PubMed (nih.gov)
    2. Qu G., Bahr-Davidson J., Prado J., Tai., Cataniag F., McDonnell J., Zhou J., Hauck B., Luna J., Sommer J.M., Smith P., Zhou S., Colosi P., High K.A., Perce G.F., Wright J.F.
      Separation of adeno-associated virus type 2 empty particles from genome containing vectors by anion-exchange column chromatography – PubMed (nih.gov). J. Viol. Methods. 2007; 140(1-2): 183-192. [PubMed]

    パーツの分子量

    rAAVの殻の部分は3種類のタンパク質でVP1, VP2およびVP3でできていますが、これらの総分子量は、600kDaです。そして、その空の中に収められるベクター遺伝子は、4.7kbpの長さで、その分子量は、170kDaです。前述の比重の差は、この分子量の差になります。

    • rAAV capsid protein (VP1~VP3): over 600kDa
    • rAAV vector (4.7kbp): over 170kDa

    超遠心以外の精製方法

    AAVは、負に荷電しています。したがって、陰イオン交換体 (AEX)に吸着性を示します。AEX resinとして、以下のものが使えそうです。ただし、最近の遺伝子治療薬としてAAVの精製方法に関する文献や特許を見ていると、その精製条件は、一般的な方法では、精製度をあげることは難しく、少し特異な条件を使用していることに目が惹かれます。例えば,pH10を超えるような条件で吸着させます。

    • Poros HQレジンによるクロマト精製
    • Poros PIレジンによるクロマト精製
    • Source 15Q レジンによるクロマト精製
    • Q-Sepharose レジンによるクロマト精製
    • HiTrap Q レジンによるrAAV1,2,4,5,6 and 8の精製

    文献

    1. Scalable Downstream Strategies for Purification of Recombinant Adeno-Associated Virus Vectors in Light of the Properties (2015)
    2. WO2010148143A1 – Improved methods for purification of recombinant aav vectors – Google Patents
    3. PEG-modulated column chromatography for purification of recombinant adeno-associated virus serotype 9 – PubMed (nih.gov)

    超遠心分析

    AAVサンプルを超遠心分析により、Emptyを含めた不純物を除くFullの純度分析が可能となります。

    • 1波長、干渉
      • サンプル量 : 260nmで0.2以上、1~2E12 vg/mL, 0.5mL以上

    [ignore]

    • 4サンプル ¥90万円

    [/ignore]

    • 2波長、干渉
      • サンプル量 : 同要件で1mL

    [ignore]

    • 4サンプル ブラス40万円

    [/ignore]

    • 別途
      • 宿主ウイルス
      • AAV Vector Plasmid
      • その他、情報
    編集履歴
    2019/10/15 Mr.Harikiri
    2020/10/01 追記 (文言整備)
    2020/11/10 超遠心分析
    2024/08/12 文言整備,引用文献の整備
  • [rAAV-Edu] rAAV9の精製方法 – 特許, 2017 – ID2566 [2023/10/23]

    [rAAV-Edu] rAAV9の精製方法 – 特許, 2017 – ID2566 [2023/10/23]

    概要

    リコンビナントAAV(rAAV)の大規模精製方法に関する方法特許(Method Patent)です.

    精製のためのスタート原材料は,rAAVを発現した細胞培養上清です.

    精製ステップは,2段のクロマトグラフィーになっています.1段目には,高い塩濃度で吸着が可能な疎水クロマト,2段目には,低塩濃度で吸着が可能な陰イオンクロマトです.

    以上のステップにより,目的遺伝子を包含していな不要なウイルス粒子を効率的に除去可能であるとしています.

    rAAV9の精製条件

    当該特許は、現時点では「国際調査報告公開」です。

    特徴的なのは、pH10.2を採用していることです。タンパク質にとってpH8以上のアルカリ性は、タンパク質に良い条件ではありません。それと、システイン残基のSS結合が緩むのが、pH8から上のpHです。それをpH10.2を使っているのは、それでしか精製できないからでしょう。ある程度のタンパク質の劣化を許容しているということですが,劣化も精製度もコントロールできるのであれば,品質上問題ではありません.ただし,その結果が効力や副作用などに影響する場合は,投与の仕方を工夫する必要性が生じるでしょうか,それも臨床試験で確認していけばいよのです(Mr.Harikir, 2020/10/01)

    • Buffer A: 20mM Bis-Tris propane (BTP), pH10.2
    • washing: 10mM NaCl, 20mM BTP, pH10.2
    • gradient: 10mM to 190mM NaCl
    • correct rAAV9 by A260/A280 ratio monitoring

    クレーム

    1. AAV9の分離方法.pH10.2条件下の陰イオン交換クロマトグラフィーに吸着し、塩濃度勾配で溶出させA260とA280でモニタリングし、A280/A280の比率でAAV9 full capsideを回収
    2. A260/A280比が1未満から1以上になる
    3. 溶出ピークにおける伝導度が20mMから190mN NaCl相当となる
    4. AAV9中間体は50nM(50mMばはないのか、typo? 各所み見られる) NaCl相当で溶出する
    5. 不純物が10%未満
    6. 純度は少なくとも95%
    7. many more

    国際特許の権利発生までのフローは、このリンクを参照のこと。

    国際特許検索は、このリンクを参照のこと。使用方法は、このリンクを参照.

    特許庁 実務者向け説明資料は、このリンクを参照のこと.

    文献

    特許

    WO 2017/160360 A9, SCALABLE PURIFICATION METHOD FOR AAV9

    https://patents.google.com/patent/WO2017160360A9/en

    編集履歴

    2019/10/15 Mr.HARIKIRI
    2020/10/01 追記(pH10.2について)
    2023/10/23 追記(pH10でウイルスの品質に影響はあるだろうが,開発段階では問題にせずに,先に進むのが良い)
    2023/10/24 追記(概要)
  • [rAAV-Edu] rAAV9の精製方法 (ウイルスの一般的な精製方法を理解できる) – 特許,2018 – ID2559 [2023/10/23]

    [rAAV-Edu] rAAV9の精製方法 (ウイルスの一般的な精製方法を理解できる) – 特許,2018 – ID2559 [2023/10/23]

    rAAV9 vectorの精製方法

    培養液のバッファ組成をTFF処理で調整、硫安(AmSo4)沈殿処理と第4級アンモニウム陰イオン交換クロマトグラフィー(HiPrep Q XL)によるFlow through mode、最後にSECによる精製でrAAV9を得る

    rAAV9 vectorの調製方法

    1. Transfection by 3 plasmid (with PEI, FBS-free)
      • 遺伝子治療用としてウイルス・ベクターを使用するはに,目的遺伝子,ウイルスの殻,それてHelper因子,など必要なコンポーネントとしてそれぞれの遺伝子をウイルス増殖用の細胞内に挿入させる.
    2. Post culture
      • 遺伝子を挿入した生産用細胞を培養する.
    3. Harvest supernatant
      • 培養上清からウイルスを取得する場合は,遠心上清を回収する.細胞内に存在するウイルスを取得する場合は,遠心の沈殿画分を回収する.
    4. TFF process
      • バッファ組成を整えたり,ウイルス濃度を高めたり,更に,ろ過液に不純物を透過させて不純物除去したりする.
    5. 1/3 sut. concentration AmSO4 precipitation
      • 疎水性を高くして不純物の沈殿化させる工程(塩析)
    6. centrifuge
      • 33%飽和濃度の硫酸アンモニウム処理して遠心により沈殿化した不純物を沈殿へ分離し上清を回収する.
    7. 1/2 sut. concentration AmSO4 precipitation
      • 更に,硫酸アンモニウムを添加して50%飽和濃度にすることで,更に分割沈殿化させる.
      • 急な塩濃度の上昇は,共沈するのでそれを避けるために分割操作を行う.
    8. centrifuge
      • 遠心して上清を回収する.
    9. Dilution to 7.3 mS/cm
      • カラムクロマトで処理できる条件に整えるために,上清を水(でよい)で希釈して伝導度を下げる
    10. AEX
      • HiPress Q XL 16/10 column chromatograph with flow through mode
    11. TFF process
      • 30kDa : ウイルスの濃縮
    12. SEC column chromatography
      • HiLoad 16/60 Superdex 200, MNH pH6.5, 300mM NaCl, 0.01% F-68

    Highly Efficient Ultracentrifugation-free
    Chromatographic Purification of Recombinant
    AAV Serotype 9

    https://www.cell.com/molecular-therapy-family/methods/pdfExtended/S2329-0501(18)30111-6

    Improved methods for purification of recombinant aav vectors, EP2443233A1, 2009

    https://patents.google.com/patent/EP2443233A1/en

    編集履歴

    2019/10/15, Mr. Harikiri
    2023/10/23, 追記(永木の精製ステップについて日本語でコメント追加)

  • [rAAV] rAAVの精製方法 – 澄明ろ過及び膜による  – ID2532 [2019/11/05]

    [rAAV] rAAVの精製方法 – 澄明ろ過及び膜による – ID2532 [2019/11/05]

    rAAVの精製方法

    2016年の文献よりAAVの精製について解説する。また、Pall製品による精製についても解説する。

    文献によれば、最終的には超遠心によりAAVベクターを濃縮精製するが、その超遠心では、CsCl濃度勾配を使用しない方法を提供する。遠心操作を多用したAAVベクター精製は、遠心機があれば簡単に行える。

    • Transfection of HEK293, and post culture
      • 20 Flasks of T-150, Three (3) Plasmid PEI
      • (説明: フラスコでHEK293細胞を培養した後,ポリエイレンイミンでプラスミドを細胞内にトランスフェクションスル)
    • Centrifugation
      • 3,000 xg 10 min
      • (説明: 遠心で細胞画分を回収する)
    • (A) Lysis by Freeze-thaw, and (B) Nuclease, (C) sodium deoxycholate
      • (A) 50mM Tris-HCl, 0.15M NaCl, 2mM MgCl2, pH8, Dry ice – ethanol ←→ 37℃ 交互に細胞破砕
      • (B) Benzonase: 50 u/mL, RNase: 10U/mL, 37℃、30min
      • (C) 0.5% sodium deoxycholate, 37℃, 30min
      • (説明: 回収した細胞を凍結融解して破砕,Nucleaseで核酸を切断,Sodium deoxycholate処理する)
    • Centrifugation
      • 2,500 g x 10min/sup
      • Pooling with cell culture supernatant
      • (説明: 遠心して上清を回収する)
    • PEG 8000, NaCl Treatment / ppt
      • 8% PEG 8000, 0.5M NaCl by 40% PEG 8000, 2.5M NaCl
      • Incubation 1h , RT
      • (説明: 最終8% PEG, 0.5M NaClに調整し1時間室温で静置して沈殿化)
    • Centrifugation 2,000 g x 30min
      • Re-suspend with HEPES buffer
      • (説明: 遠心して沈殿を回収しHEPES バッファで沈殿を懸濁および融解する)
    • Chloroform Extraction / cfg-sup / Evaporate
      • Add equal volume of chroroform
      • Vortex going , 2min, RT
      • cfg (370 g x 5min)/supernatnat
      • Evaporate 30min, RT
      • (説明: HEPESバッファで懸濁・融解した液に対して,クロロホルム添加により,(おそらく)水相にAAVを抽出する)
    • PEG 8000, AmSO4 Treatment / AAV in sup
      • 10% PEG 8000, 13.2% AmSO4 pH8.0 adjusted by stocked solution
      • Incubation at RT
      • (Impurity salt out ppt), HEPES buffer pH has to be kept at pH8.0, AAV stable is Alkaline that acid
      • (説明: PEG8000と硫酸アンモニウムで不純物を沈殿化し,AAVを上清に回収する)
    • Dialysis using 50kDa
      • diluent: PBS or MEMEM media with 0.001% puluronic F68 for preventing the aggregation
      • (説明: 分画分子量50kDaのUF膜を用いてPBSまたはMEMEMにバッファ置換する.プルロニックF68は凝集抑制に効果がある)

    清澄ろ過

    Pall製品による清朝濾過。

    • PHD11 : cellulose based capsule
    • PDP8 + Bio 10 : Bio 10のみではろ過量が少ないが、PDP8の組み合わせで良好にろ過が可能

    AEX Membrane

    Pall 製品とこれらを用いたPallとのCo-Developingがサービスとして可能です。

    • Mustang Q membrane chromatography for enriched full capsids
      • Labの超遠心の代替
      • Mustang Membrane: 8000A pores vs polymer matrix:Packed 40-90μm beads 300-1000A pores
    • AAV5 gradient Elution by Mustang Q XT Membrane in Acrodisc Capsule
      • Step elution : Empty in 1st elution, full in 2nd elution
      • Peak 1 : 10 mS/cm, 13E11
      • Peak 2 : 14 mS/cm, 7E11
    • TFF
      • 100kDa for AAV, 300kDa for LV
      • TMP : 0.5 ~ 0.8 bar
      • Shear rate : <4,000 second-1 for hollow fibers; <4 L/min/m2 for cassettes.
      • J=K*ln(Cbulk/Cconc)

    文献

    Inexpensive, serotype-independent protocol for native and bioengineered recombinant adeno-associated virus purification

    http://www.jbmethods.org/jbm/article/download/102/90

    編集履歴

    2019/10/04 Mr.Harikiri
    2020/10/01 文言整備
    2020/11/05 追記 (Pall膜製品による精製 Pall Webinarより)
    2023/10/24 追記 (説明を追加)
  • [rAAV] Parvovirusに属するアデノ随伴ウイルス(AAV)をベクター(rAAV)にして遺伝子治療を行う — rAAVの特徴と臨床 (2003) – ID2516 [2019/10/02]

    [rAAV] Parvovirusに属するアデノ随伴ウイルス(AAV)をベクター(rAAV)にして遺伝子治療を行う — rAAVの特徴と臨床 (2003) – ID2516 [2019/10/02]

    AAVベクター

    Adeno associated virus (AAV) ベクター(rAAV : recombinant AAV)作成に関する現在の技術 (2019現在でも)では、Rep/Cap遺伝子と目的の治療用遺伝子(GOI)とは、別々のPlasmidで作り、それを混合体として細胞にトランスフェクションする方法が一般的である.即ち、野生型のAAVの感染状況とは異なる人為的な方法でウイルスが作られる.

    野生型(Wild type)のAAVの感染の場合、高い確率でターゲットとなっている染色体のある特定の位置に、そのAAVの遺伝子が組み込まれる。その位置は同定されている。

    しかし、rAAVによるGOIの染色体DNAへの組み込みは、Wild Type AAVの場合とは異なり、染色体に組み込まれたとしても稀で、しかもランダムの位置に導入される考えられている。

    AAVの血清型

    今回紹介する文献(2003年)では、当時で1から8型が知られていたようだ。血清型2, 3および5はヒトより分離されたもので、2型が最もよく研究されている。

    現在(2020)では、血清型9と10も知られており、血清型9では、脊髄性筋萎縮症(SMA)の遺伝子治療薬であるZolgensmaに使われている(2020/07/17追記)。

    ベクター種ごとの特徴

    • adeno associated virus( AAV )ベクターは、非分裂細胞への効率的な遺伝子導入と長期の遺伝子発現。他のウイルスベクターと比較してAAVの方が安全性に優れている。ただし、未分化な幹細胞への導入効率は低い。
    • レンチウイルスベクター(HIVベクターが代表的)は、AAVベクター同様に非分裂細胞への効率的な遺伝子導入と長期の遺伝子発現。静止期にある幹細胞に適しており、ES細胞に効率よく遺伝子導入できる
    • レトロウイルスベクター: 分裂細胞にしか遺伝子導入ができないため、造血系細胞への導入に絞られる
    • アデノウイルスベクター: 非分裂細胞への効率的な遺伝子導入が可能であるが、遺伝子発現は長期持続しない
    ウイルス種ターゲット発現持続性安全性
    AAVAAV1~10非分裂細胞長い高い
    LentivirusHIV非分裂細胞
    (ES細胞)
    長い
    Retrovirus分裂細胞
    (造血系)
    Adenovirus非分裂細胞短い

    AAVのウイルス学的特徴

    • AAVは、動物ウイルスの中で最も小型の線状1本鎖DNAウイルスであるパルボウイルス科(Parvoviridae)に属し、20-26nmの大きさで、ヒト成人での感染率は85%である。物理学的に極めて安定。
    • AAV2のReceptorはヘパラン硫酸が想定され、FGF receptorやαVβ5インテグリンなどもreceptorとして示唆されている。
    • AAV5のReceptorは、PDGF receptorであることが分かっている。

    Parvoviridaeは3属

    ここでは,AAVがどのウイルスに属しているのか,どんな特徴があるのか,について理解するために,その他のウイルスと比較する.

    1. Autonomous Parvovirus
      • バルボウイルス属
      • 複製にヘルパーウイルスを必要としない
    2. Dependovirus
      • ディペンドウイルス属
      • AAVのこと。複製にヘルパーウイルスを必要とする
      • 病原性は認められていおらず、血清型は1から8が知られている
    3. Erythrovirus
      • エリスロウイルス属
      • 人に感染するB19と猿パルボウイルスは、赤血球への特異性と特徴的な転写機構から区別されている

    AAVベクターとしての特徴

    ウイルスゲノムは約5kbの線状1本鎖DNA.ブラス鎖とマイナス鎖は半々。ゲノムの両端に145b長のITR (inverted terminal repeat)がT型ヘアピン構造で存在し、プライマーの役割となり複製時に機能すると共に、ウイルス粒子へのPackagingと宿主細胞染色体DNAへの組込みにも機能する。

    • AAVウイルスゲノム : 5kb,1本鎖DNA
    • ゲノムの両端に145bのinverted terminal repeat (ITR)を有する.
    • ITRは,T型ヘアピン構造をとっている.
    • ITRは,複製時にプライマー機能,ウイルス内へのPackaging,宿主染色体DNAへの組込機能を有する.具体的には,以下の通り.
    • p5プロモータからRep78, Rep68 (large Rep)のmRNAが転写: endonuclease, helical, ATPase は、プロモータ活性調節、ゲノム複製、宿主 第19版染色体長腕AAVS1領域(共通配列GAGCにRep78/Rep68が結合)へのゲノム組込み.
    • ただし、AAVベクターでは、ITRに続けてRepはコードさせず、GOIを配置するため、特定箇所への組込み機能は享受できないが、稀に組み込まれるとそれはランダムになる傾向があり、且つ、アクティブな遺伝子領域に起こりやすい.非分裂の場合、挿入変異を心配する必要はないと考えられる
    • p19プロモータからRep52, Rep40 (small Rep)のmRNAが転写: VP1, VP2, VP3のカプシド蛋白
    • 単独感染では、(A)潜伏感染のみで済むが、アデノウイルスなどのヘルパーウイルスが重感染するとAAVが複製されることになり、(B)溶解感染となる
    • AAVベクターで導入された遺伝子は、ほとんどがエピソームとして存在していると考えられているため、増殖細胞の場合では、失われやすい.
    • ゲノムが1本鎖であることから遺伝子発現には2本鎖になるStepが必要であり、その効率が高くない場合は、大量のベクターを必要とする
    • 小型の粒子であることから、挿入できる遺伝子は小さくなる
    • 重複関連が可能なため、別々のベクターを使って足りないものを導入することが可能 (コンカタマー形成が可能であるため、別々に導入(スプリットベクター)しても細胞内で連結される性質を利用できる)

    臨床試験

    参考文献によれば、AAV2ベクターによる血友病Bの臨床試験: 筋肉では一部の患者で効果があった。現在、肝臓で試験中(ベクターゲノムが精液中に一過性に検出されたが、生殖細胞への遺伝子導入は確認されていない)

    以上

    参考文献

    1. ウイルス 第53巻 第2号 pp.163-170, 2003, http://jsv.umin.jp/journal/v53-2pdf/virus53-2_163-170.pdf
    2. Dependoparvovirus, ViralZone
    編集履歴 Mr.HARIKIRI
    2019/12/31 文言整備、少々追記
    2020/05/03 文言整備
    2020/07/17 追記(Zolgensma)
    2023/10/24 文言整備
  • [rAAV] AVB SepharoseによるrAAVの精製, 2009 – ID2461 [2019/09/28]

    [rAAV] AVB SepharoseによるrAAVの精製, 2009 – ID2461 [2019/09/28]

    はじめに

    rAAVを特異的に精製が可能なAffinity resingの紹介です.

    rAAV (recombinant AAV)は、天然に存在するAAV(ウイルス)を遺伝子改変したものです。一般的にウイルスの電荷は負であるため、精製純度を高めるには物性を利用して陰イオン交換体に吸着・溶出(AEX)させてる手順で可能です。しかし、負の電荷を持っている物質は、精製対象となるウイルスを含む培養液には,多種多様な不純物が含まれています.そのため、このAEXは特異的な精製方法ではありません。そこで、特異的にAAVに結合性を有する精製基材が求められています。

    特異的な精製基材

    AVB Sepharose (TM) によるsf9細胞由来のrAAVの精製

    以下は,サンプルとしてバキュロウイルスで発現させたAAVを使用し,AVB Sepharoseを用いた精製手順です.

    1. Sf9 cell (10e8)のバキュロウイルスによるTransfection 1hr処理
    2. その後3daysの培養後
    3. cellをharvestして、Detergent処理して抽出液を回収
    4. capside化しなかったDNAなどをBenzonase処理により分解処理
    5. Affinity Column精製 (10 mm x 100 mm, AVB Sepharose High Performance)
    6. Washing: PBS(pH7.4)
    7. Elution: low pH glycine-HCl (pH2.7)
    8. Elution peak tiger: 1.7 x 10e13 particles/mL
    9. Purity: >90% (4-12% SDS-PAGE)
    10. AAV-1のVP1(81.4kDa), VP2(66.2kDa), VP3(59.6kDa)

    Abbreviations: NRP, nuclease-resistant paticle; TU, transduction unit.

    評価

    nuclease resistance particles/cell: 3.7 x 10e4 ~ 9.6 x 10e4

    1. ウイルス粒子内にウイルスの遺伝子が完全にパッキングされていれば,necleaseによる抵抗性があるという意味.
    2. 今回の1 step精製方法による回収量は,1つの細胞当たりに3.7 x 10e4 ~ 9.6 x 10e4のnuclease抵抗性のウイルス粒子を回収できた.

    文献

    A Simplified Baculovirus-AAV Expression Vector System Coupled With One-step Affinity Purification Yields High-titer rAAV Stocks From Insect

    https://www.sciencedirect.com/science/article/pii/S1525001616308000

    編集履歴

    2019/09/28, Mr.Harikiri
    2022/01/12,追記(はじめに)
    2023/10/25,文言整備

  • [Bio-Equip] Thermo Fisher 「CaptureSelect」 – AAV1~AAXをキャプチャリングできるAffinity resin – [2019/09/21]

    [Bio-Equip] Thermo Fisher 「CaptureSelect」 – AAV1~AAXをキャプチャリングできるAffinity resin – [2019/09/21]

    ID2320

    CaptureSelect

    CaptureSelectは、複数種類のアデノ随伴ウイルス(AAV)に対応するアフィニティ精製用の樹脂(resin)です。

    抗体医薬での精製方法がプラットフォーム化されているように、遺伝子治療薬のデリバリーシステムであるAAVの精製に欠かせない担体です。

    CaptureSelectは、抗体医薬のキャプチャリングとして使用するProtein Aレジンに相当するステップに使用します。

    動画による説明 : CaptureSelect

    ラクダ抗体を利用したAffinity Resin技術

    Binding Capacity: >10e13~10e14

    ウイルスベクター精製用 POROS CaptureSelect 樹脂および試薬 , より

    再生処理

    吸着・溶出してAAVを精製した後は、レジンの再生処理が必要です。十分な洗浄を行って、再利用することで実製造でのコスト低減が可能でなければなりません。0.5M NaOHなどのアルカリ再生処理が可能であることに越したことはありませんが、リガンドがタンパク質なのでアルカリ洗浄には対応していないようです。3M GuHClでの再生処理が可能であるので、取り敢えずは合格というところでしょうか。本当はアルカリ耐性が欲しいところですが。

    • Resistance: 4M Ures, 3M GuHCl

    文献

    1) データシート

    Enabling technologies for efficient downstream processing of biosimilars, vaccines and gene therapy vectors:

    https://www.thermofisher.com/content/dam/LifeTech/latin-america/promotions/pdf/bioproducao/12-Shelly-Parra-Efficient-downstream-processing-of-biosimilars-vaccines.pdf

    編集履歴

    2019/09/21, Mr.Harikiri
    2021/11/02,追記(解説、再生処理)

  • [rAAV-DSP] AVB Sepharose High Performance – ID2292 [2019/09/21]

    [rAAV-DSP] AVB Sepharose High Performance – ID2292 [2019/09/21]

    AVB Sepharoseの概要

    吸着可能なAAVの血清型

    • AAV1
    • AAV2
    • AAV3
    • AAV5

    Resinの特性

    • Binding Capacity: >10e12 vg/mL of resin
    • 組換え酵母で作られた蛋白質(14kDa)
    • Resingの安定性: 文献

    概要

    低pH溶出と比較して、高pH溶出および0.5または1.0 Mアルギニンでは、収量は低下したが、アルギニンを含む高pH溶出バッファーは、AAV純度が高くなることを示しており(260/280)、高pH溶出は、低pHでは敏感なウイルスを精製するための代替手段となる。

    Elution bufferの種類

    • EB1 0.1 M sodium acetate, 0.5 M NaCl, pH 2.5
    • EB2 0.1 M sodium acetate, 0.5 M NaCl, 0.5 M arginine, pH 10.0
    • EB5 20 mM Tris-HCl, 2.5 M MgCl2, pH 8.0
    • EB6 0.1 mM sodium acetate, 2.5 M MgCl2, pH 2.5
    • EB7 0.1 M glycine, 0.5 M NaCl, pH 3.0
    • EB8 20 mM Tris-HCl, 0.5 M NaCl, 0.5 M arginine, pH 10.8
    • EB9 1.5 M NaCl, 0.02% (w/v) TweenTM 80, 50% (v/v) ethylene glycol, 20 mM L-histidine, 20 mM CaCl2, pH 6.
    Load Sample/Column information
    • カラム : Tricorn 5/50 (1 mL column volume)
    • レジン : AVB Sepharose High Performance, 1 mL
    • 平衡化バッファ : 20 mM Tris-HCl, 0.5 M NaCl, pH 8.0
    • ロードサンプル : rAAV, 7x10e10 vg/mL x 20 = 1.4x10e12 in Equilibration buffer / 0.2 μm filter, 20 mL
    • 線流速 : 153 cm/h
    • 溶出液評価: AAV ELISA測定
    Study 1
    1. 1st Elution buffer: EB1(recovery 120% of 130% total recovered virus: batch wiseと結果が真逆)
    2. 2nd Elution buffer: EB8 (recovery 6%)
    Study 2
    • Elution buffer : EB3(recovery 72% of 73% total recovered virus
    Study 3
    • Elution buffer : 20mM Tris-HCl, 0.5M NaCVl, 1.0M arginine, pH10.8 (recovery 62% of 64% total recovered virus)

    AVB SepharoseTM High Performance, GE Healthcare

    https://gels.yilimart.com/Assets/Images/doc/file/28411211_DATAFILE_01.PDF

    編集履歴

    2019/09/21, Mr.HARIKIRI

  • [rAAV-Edu] POROS CaptureSelect (AAV精製 resin) の性能とAEXによるfull/emptyの分離 – ID2271 [2019/09/18]

    [rAAV-Edu] POROS CaptureSelect (AAV精製 resin) の性能とAEXによるfull/emptyの分離 – ID2271 [2019/09/18]

    AAVX Resinの特徴

    複数の血清型AAVを吸着

    POROSは、Thermo Fisherのブランドです。以前は独立したメカーでしたが、M&Aで傘下になっています。POROSプランドでAAVをキャプチャー精製する製品は、CaptureSelect(TM)というものがあります、そのラインナップは、AAV8, AAV9, AAVXです。AAVXレジンは特別で、血清型の違いに関係なく高い吸着性能を持っています。すなわち、1つのレジンで精製方法をプラットフォーム化することが可能です。

    これは、抗体医薬で使用されるていProtein Aレジンと同様の位置付けに等しい将来性のあるレジンです。

    • Binding Capacity: >10e14 (vg/mL)

    CaptureSelectとは

    ラクダの重鎖抗体を応用したnonobody技術により、AAVに対する結合性のあるLigandをPorosレジンにカップリングした製品である。

    AAVXレジンの吸着性能をバッチ法で評価

    CaptureSelectのラインナップの内、AAVXは殆どのAAVの血清型に対して高い親和性を有している。

    AAVXレジンと各血清型のAAV (培養、抽出、清澄化したサンプル液)を混合し、チューブ内で10分間の吸着反応させる系で、溶出バッファー(0.1M citric acid, pH2)により回収した溶出液をqPCRでvgを測定し、その回収率を評価している。

    その結果、AAV1(99.63%), AAV2(97.8%), AAV2_HSPG(98.33%), AAV4(98.05%), AAV5(97.88%), AAV6(97.45%), AAV6.2(98.93%), AAV7(98.37), AAV8(97.76%), AAVrh10(96.28%), AAVrh32.33(99.29%), AAV9PHPB(98.51%), AAV7m8(98.39%)、と多数の血清型のAAVを高い効率で吸着・溶出が可能であることが示されている。

    AAVXレジンとその他のレジンとの比較

    比較に使用したレジン

    1. AVB: GE Healthcare
    2. Poros AAV8
    3. Poros AAV9
    4. Poros AAVX

    その結果、下図のように、AABレジンでは、AAV8, AAV9、AAV10を吸着できるものの60%から80%程度の吸着能しかないことが示されている。AABレジンの製品仕様ではAAV1, AAV2, AAV3及びAAV5で使用できるとあることから、当然の結果である。

    AAV2のemptyとfullのHQカラムによる分離

    CsCl2密度勾配の超遠心処理で精製した遺伝子が封入されていないempty AAVと封入されているfull AAVを混和して、AEXカラムであるPOSOR HQカラムにアプライしてクロマトグラフィーを行うと、emptyとfullを分離できる。

    • emptyの溶出位置: 10mS/cm
    • fullの溶出位置: 12mS/cm

    参考文献

    Overcoming downstream purification challenges for viral vector manufacturing: enabling advancement of gene therapies in the clinic: https://pdfs.semanticscholar.org/935c/2e2ee928ba35ebbe22bf43c2e5e1ebe1a4f0.pdf

    Separation of adeno-associated virus type 2 empty particles from genome containing vectors by anion-exchange column chromatography: https://www.sciencedirect.com/science/article/abs/pii/S0166093406004022?via%3Dihub

    Review – ラクダが持つ不思議な抗体の魅力:https://harikiri.diskstation.me/myblog/biologics/2300/

    編集履歴

    2019/09/18, Mr. Harikiri
    2021/11/02,記載整備