タグ: purification

  • [Bio-Edu] タンパク質を精製用のカラムにロードする量 – ID4318 [2019/12/14]

    [Bio-Edu] タンパク質を精製用のカラムにロードする量 – ID4318 [2019/12/14]

    ロード量

    タンパク質の精製には,樹脂への吸着を多用する.吸着に吸着する目的のタンパク質は,効率性の面から出来るだけ多くを吸着させるべきである.

    しかし,吸着可能な最大量で吸着させるべく,目的タンパク質を含む溶液をカラムにロードしていくと,最大吸着容量に達するまでに,乗除に吸着できずに漏れ出てくる.

    漏れ出てくる量は,合理的に見積もりロードを決定すなければならない.求められた吸着容量をBinding Capacityという.

    Break Through Point

    ResinのBinding Capacityを求めるには、カラムクロマトにおいて、目的物を含む溶液をカラムにロードしなから、カラムから出てくる液をフラクションとして回収していく。ある時点のフラクションを測定し、目的物の濃度が、ロードサンプルの濃度(100%)と比較して、その濃度が5%を超えた時点のロード量をBreak Through Pointという.

    Binding Capacity

    Break Through Pointのロード量を更に、一般的には70%~80%にした値をBinding Capacityと定義する.Protein Aカラムを使用する抗体の精製では、これがベストプラクティスである。

    イオン交換クロマトの2つの方法

    イオン交換クロマトでは、精製を優先した場合、Binding Capacityのロード量で行うクロマトは一般的ではない。一方、少なめのロード量(30% Binding Capacity)で吸着させて,溶出バッファのグラジェント効果を高める方法がラボ精製では良く使われる.

    グラジェント精製

    インタラクションに強度の高低を持たせることができるイオン交換クロマトなどの場合、グラジェントによる精製は純度を上げるには効果的である(page 2).

    少ないロード量では、カラムの上部にしか、目的物が吸着していない状態とすることができる。その状態からバッファグラジェントを開始すると、カラムの上から下まで移動していくにつれて,初期の吸着物集合体は、Resinとの相互インタラクションに違いがあればある程,それぞれの成分は、分離されていく.

    ステップワイズ精製

    グラジェント精製は,実製造スケール(スケールアップされた)では,同一のクロマトを実施して品質を一定に管理すことは,一般的に難易度が高い。そのため,実製造では、グラジェント精製は行われることは少ない.

    そこで、グラジェント精製に極力近づけたステップワイズ精製が選択されることが多い(page 3).

    ステップワイズ精製のロード量は,精製効率が犠牲になる場合があるものの、ロード量をBinding Capacityに近づけられる可能性もあり、COGs改善の可能性も考えられる(page 3).

    Break Through Point for Capturing

    カラムの吸着容量
  • [Bio-Lab] マニュアル式のラボスケール・カラムクロマトで蛋白質精製の条件を検討する – ID3106 [工事中]

    [Bio-Lab] マニュアル式のラボスケール・カラムクロマトで蛋白質精製の条件を検討する – ID3106 [工事中]

    はじめに

    タンパク質精製の戦略

    高価な装置が無くても始められる蛋白質の精製について解説する。

    予算が少ない大学の研究室や高価な装置を整備できないベンチャーでの蛋白質精製について、タンパク質精製に関して初期教育、原理を理解しながらの目的蛋白質の精製サンプルの取得が可能である。

    取り敢えず、1mLカラムでのスモールスケールによるサンプル調製から、400mLカラム程度のスケールアップも可能です。

    初期のサンプル調製においては、クロマト装置は重厚長大です。使用前と後のシステムの洗浄など、結構面倒です。こんな初期に使うものではありません。

    AKTAの出番は、その先に待っています。そもそもタンパク質精製は、集中して条件設定を実施し短期間で片付けるのです。

    編集履歴
    2019/11/10 はりきり(Mr)
    2020/06/19 追加 (未完)

    準備

    情報収集

    精製しようとしているタンパク質はなんですか? 精製タグは付いていますか? Refoldingは必要ないですか? 分子量を把握していますか? 等電点は? 疎水性?

    タンパク質の情報

    まずは、敵を知ることからです。情報を収集しましょう

    • アミノ酸配列 : 以下の情報を知るために必要です
      • 分子量
      • 等電点
      • 疎水性
    • 精製タグ : 精製タグは、最大でもHis-tag程度にしておきましょう。その他精製タグは、物性を変化させたり、活性にも影響します
      • His
      • GST
      • etc

    出発材料

    • 微生物
      • E.coli
      • 酵母
    • 動物細胞
      • CHO細胞
      • HEK細胞

    生産

    • 微生物培養 → Inclusion Body(この解説では、これを前提)
    • 動物細胞培養 → 培養上清

    検討準備

    目的蛋白質の測定法を考える (SDS-PAGE, ELISA, RPHA, 逆相HPLC、アフィニティカラム)

    目的蛋白質についてRefoldingが必要か検討する。ここでは、Refoldingについては記載していない。

    プレパックカラムは使わず、エンプティカラムにバルクのレジンを自己充填したカラムを使用する

    クロマト装置は、基本的に必要ではなく、ピペット操作かペリスタリックポンプを使う

    カラムサイズは、0.5mLから100mLを想定する。取得する蛋白質は、数mgから1g程度。

    小さいカラムサイズでは、自然落下でクロマトを行う。

    大きいカラムサイズではペリスタリックポンプを使用する

    装置

    SDS-PAGE装置
    UVメーター(A280, A260なとを測定)
    ピペット、チップ
    ペリスタリックポンプ
    • シリコンチュープ
    • シリコングリス
    pHメータ
    試験管
    • マルエムチューブSS14
    • 50mM遠心管

    手順

    1. 手順 – 装置、カラムの充填及びカラムの取り回し(マニュアル)

    GE HealthcareのEmpty Columnにレジンを充填(0.5mL or 1mL)

    カラムクロマトは、自然落下による(線速は大きくなるが、レジンの最大キャパシティより1/3程度低いアプライ量で行うため、クロマト自体に問題は少ないが、常に考慮する必要がある点である)。

    フラクション回収は、6カラムボリューム(CV)

    6CV分のバッファを調整しておき、順次カラムにアプライしてカラムからでる液をチューブで回収する

    2. 手順 – 吸着条件の決定

    各種バッファの準備

    水洗いしたバルクのレジンを使って0.5mLカラムの準備 30%から50%程度のスラリでカラム充填する

    カラムの洗浄と平衡化

    血漿や培養液の前処理してアプライサンプルを準備する : 水と酸及びアルカリにより電気伝導度とpHの調整

    アプライサンプルのロードとパスした未吸着画分の回収及び目的蛋白質の測定 : 身吸着画分の量が多い場合は、未吸着画分に更に水と酸及びアルカリを添加して吸着しやすく調整し、その未吸着画分をそのまま再アプライする。満足する未吸着画分量から、水と酸及びアルカリでの調整量を最終決定する。

    3. 手順 – 洗浄及び溶出条件の決定(1)

    アプライpHと同じpHで、塩濃度を確認する : ベースバッファを作成し、3M NaClで段階的になるよう塩濃度の異なるバッファを作成し、順次カラムにアプライしフラクションを回収する。蛋白質量を測定し、目的の蛋白質が洗浄画分に溶出されない条件を洗浄画分に決定、溶出が完了する条件を溶出条件に決定する。

    4. 手順 – 強固に結合した目的物と不純物の存在について心証をえるための操作

    6M 塩酸グアニジン(GuHCl)を0.5CVアプライ、水を5.5CVアプライし全てを回収する。この画分は、アプライサンプル、洗浄画分、溶出画分と一緒にSDS-PAGE分析を行う。目的蛋白質の染色バンドと同位置に対して、6M GuHCl画分にどれくらいの割合が含まれているか、不純物はどれくらいの割合が含まれているか確認する。

    6M GuHCl画分中に容認できない量の目的蛋白質が含まれていた場合、上述の手順で6M GuHClの手前までの手順を再度実施する。その後、以下の手順に従い最適な溶出pHを決定する。

    5. 手順 – 溶出条件の決定(2)

    pHを上げるか下げるか方針を決定する。カラム内の塩濃度を下げるために水6CV添加する。溶出条件の決定(1)で実施したようにバッファを作成するが、今度は、異なるpHでNaCl濃度を決定していく。最後に6M GuHCl画分を回収し、前回と同様にSDS-PAGEを行い溶出効果の違いを確認する。洗浄する場合のpH及び溶出する場合のpHを、この検討から決定することができる。もしかすると洗浄のpHは溶出のpHと異なることもある。

    今後、各手順の詳細や根拠は随時アップデートする予定、2019/11/10 by はりきり(Mr)

    高価な装置が無くても始められる蛋白質の精製

    マニュアル操作によるカラムクロマト条件の決定

    蛋白質の精製を行おうと思う時は、その必要性に迫られてのことだと思うので、原材料は準備されているとの前提で、以下話を進めます。装置の洗浄やその他準備が必要ないため小回りが効き短時間で条件設定し精製品を取得できる

    大学や高価な装置を整備できないベンチャーでの蛋白質精製についての初期教育はもとより目的蛋白質の精製品の取得に役立つ。例えば、ツール蛋白質の取得には有効である。

    準備

    目的蛋白質の測定法を考える (SDS-PAGE, ELISA, RPHA, 逆相HPLC、アフィニティカラム)

    目的蛋白質についてRefoldingが必要か検討する。ここでは、Refoldingについては記載していない。

    プレパックカラムは使わず、エンプティカラムにバルクのレジンを自己充填したカラムを使用する

    クロマト装置は、基本的に必要ではなく、ピペット操作かペリスタリックポンプを使う

    カラムサイズとして0.5mLから100mLは対応可能(数mgから1g程度まで取得可能。小さいカラムサイズでは、自然落下でクロマトを行う。大きいカラムサイズではペリスタリックポンプを使用する

    手順

    1. 手順 – 装置、カラムの充填及びカラムの取り回し(マニュアル)

    SDS-PAGE装置

    UVメーター(A280, A260なとを測定)

    ピペット、チップ

    ペリスタリックポンプ、シリコンチュープ、シリコングリス

    HORIBA ハンディpHメータ及び伝道度メータ

    マルエムチューブSS14, 50mM遠心管

    GE HealthcareのEmpty Columnにレジンを充填(0.5mL or 1mL)

    カラムクロマトは、自然落下による(線速は大きくなるが、レジンの最大キャパシティより1/3程度低いアプライ量で行うため、クロマト自体に問題は少ないが、常に考慮する必要がある点である)。

    フラクション回収は、6カラムボリューム(CV)

    6CV分のバッファを調整しておき、順次カラムにアプライしてカラムからでる液をチューブで回収する

    2. 手順 – 吸着条件の決定

    各種バッファの準備

    水洗いしたバルクのレジンを使って0.5mLカラムの準備 30%から50%程度のスラリでカラム充填する

    カラムの洗浄と平衡化

    血漿や培養液の前処理してアプライサンプルを準備する : 水と酸及びアルカリにより電気伝導度とpHの調整

    アプライサンプルのロードとパスした未吸着画分の回収及び目的蛋白質の測定 : 身吸着画分の量が多い場合は、未吸着画分に更に水と酸及びアルカリを添加して吸着しやすく調整し、その未吸着画分をそのまま再アプライする。満足する未吸着画分量から、水と酸及びアルカリでの調整量を最終決定する。

    3. 手順 – 洗浄及び溶出条件の決定(1)

    アプライpHと同じpHで、塩濃度を確認する : ベースバッファを作成し、3M NaClで段階的になるよう塩濃度の異なるバッファを作成し、順次カラムにアプライしフラクションを回収する。蛋白質量を測定し、目的の蛋白質が洗浄画分に溶出されない条件を洗浄画分に決定、溶出が完了する条件を溶出条件に決定する。

    4. 手順 – 強固に結合した目的物と不純物の存在について心証をえるための操作

    6M 塩酸グアニジン(GuHCl)を0.5CVアプライ、水を5.5CVアプライし全てを回収する。この画分は、アプライサンプル、洗浄画分、溶出画分と一緒にSDS-PAGE分析を行う。目的蛋白質の染色バンドと同位置に対して、6M GuHCl画分にどれくらいの割合が含まれているか、不純物はどれくらいの割合が含まれているか確認する。

    6M GuHCl画分中に容認できない量の目的蛋白質が含まれていた場合、上述の手順で6M GuHClの手前までの手順を再度実施する。その後、以下の手順に従い最適な溶出pHを決定する。

    5. 手順 – 溶出条件の決定(2)

    pHを上げるか下げるか方針を決定する。カラム内の塩濃度を下げるために水6CV添加する。溶出条件の決定(1)で実施したようにバッファを作成するが、今度は、異なるpHでNaCl濃度を決定していく。最後に6M GuHCl画分を回収し、前回と同様にSDS-PAGEを行い溶出効果の違いを確認する。洗浄する場合のpH及び溶出する場合のpHを、この検討から決定することができる。もしかすると洗浄のpHは溶出のpHと異なることもある。

    今後、各手順の詳細や根拠は随時アップデートする予定、2019/11/10 by はりきり(Mr)

  • [Bio-Edu] 排除体積効果 – タンパク質を精製し濃縮する時に、知っておきたい知識 [2024/01/02更新] ID2701

    [Bio-Edu] 排除体積効果 – タンパク質を精製し濃縮する時に、知っておきたい知識 [2024/01/02更新] ID2701

    はじめに

    バイオ医薬など高分子を取り扱う場合,排除体積効果について知っておかなければならない.排除体積効果は,タンパク質の塩析の原理に関わる.また,高濃度のバイオ医薬品の処方組成(バッファ組成)をUF/DF(限外ろ過膜; Ultrafiltration/透析; Diafiltration)を用いてバッファ置換や濃縮,特に高濃度のタンパク質を調製する場合は,pH shift (Donnan effect)の対策のために理解しておかなければならない必須のナレッジである.

    抗体医薬では

    高濃度化するためにUltrafiltration Filter (UF)を用いて濃縮・バッファ組成置換を行うが、その際、濃縮過程で「排除体積効果」により組成が変化することでpHがシフトする現象が見られる場合がある。例えば、pH5の抗体溶液を30kDaのUFで濃縮していくと、あるバッファ組成ではpHは上昇していく。抗体分子の分子量は150kDa、バッファ成分は低分子であるため、抗体分子と比較してUF膜の濾過側へ濾過されやすい。濃縮前の抗体とバッファの成分との比率は、濃縮課程で「排除体積効果」により変化していく。抗体の等電点(pI)が塩基性の場合、バッファ成分が少なくなるため濃縮後の高濃度の抗体溶液のpHは濃縮前よりも高くなる。

    抗体医薬の高濃度化では、以上の現象が生じることを踏まえて濃縮およびバッファ組成置換のプロセス条件を構築することで製造工程の管理を行う必要がある (2024/01/02 by Mr.Harikiri)。

    排除体積効果

    排除体積効果を簡単にイメージすると、「体積の大きい分子が体積の小さい分子の居場所を無くす効果」となります。

    • 排除堆積効果とは、巨大分子(macromolecule)によって占有される空間体積における熱力学的効果です1)
    • 例えば、細胞内(細胞質)には、細胞の活動に必要なタンパク質(巨大分子)が局在状況(空間の体積を排除している状況)となっている1)
    • その結果、macromoleculeは、互いに接近しておりエントロピーが増加注)、また、分子間引力が働きやすくなり、分子同士の解離定数が減少(集合)する
    • macromoleculeが高密度で存在する環境では、その配置の多重度は増加する.すると分子同士が結合する状況も生まれる.エントロピーが最小になるように均衡していく.
    • その他、分子間に働いている力
      • イオン結合力
      • ファンデンワールス力
      • 水素結合
      • 疎水性相互作用
      • 枯渇力
      • source
    • 注) 重力と位置エネルギーの関係と同様の理屈で、重力すなわち分子間力が大きくなれば、位置エネルギーすなわち、分子の熱エネルギーが大きくなるsource

    液晶が並ぶ理由2)

    窮屈な状態には最も楽な状態になろうとする.ポイントは,①分子間力,②排除体積効果(),③パッキング(整列した方がよい,オーダーパラメータS=1は同じ方法,S=0はランダム),④温度(低い温度の方が安定),電気的力(+と+又は-と-よりは,+と-).

    活動係数4)

    高分子の活動係数は,濃度に影響を受ける.なぜなら,高分子であるが故,排除体積効果が無視できず,エントロピーが濃度により変化するためである.

    分子の濃度は,容積モル濃度(体積変化があるため温度に影響される),重量モル濃度(温度に影響されない),モル分率があり,熱力学を扱うには,モル分率表示が適する.希薄溶液の全モル予数を水分子のモル数に近似(55.5, 1kg)すると,溶液自身によるエントロピー変化,すなわち,アニタリー・エントロピー変化(ΔSu)を求めるられる.

    Gurney(1953)は,このΔSuの大小から,水素構造を壊すイオン(order-destorying ions)と水を構造化するイオン(order-producing inons)に分別した.

    Kauzmann(1956)は,疎水性分子を非極性溶媒から水溶液に移動させたときのエントロピー変化から求めたΔSuは負(<0)になることを見出し疎水性分子の界面間の相互作用の一因と考えた(疎水結合).

    疎水性結合による会合メカニズム

    脂肪性炭化水素や芳香族炭化水素を非極性溶媒から水溶液を移した場合,ユニタリー・エントロピー変化(ΔSu)は,-24 ~ -16 e.u.,ユニタリー・自由エネルギー変化(ΔGu)は,+3~+5 kcal/mol増加した.構造化した水槽(ice-berg)が疎水性分子の表面に形成された結果である.この系の状態は,不安定である.不安定であるため,疎水性分子は,お互いに会合(水素結合)しようとして,ice-berg量(直接的な報告としては最も多い)を減らそうとすることになる.2003年の中性子,X線反射率を使用したの報告では,iced-bergは,1.5~2nmの構造があるとされる.

    AOモデルによる会合メカニズム(Asakura & Oosawa)

    立体モデルとして高分子を大きな球,小さい分子を小さな球とする.大きな分子が互いに接近しない環境下では,小さい分子の並進運動は,使用可能空間として最大になっている.もしも,大きい分子が接近して接触し会合したとすると,会合面周辺も含めて排除領域が小さくなるため,小さい分子の並進運動に利用できる空間容積が増加する.すなわち,並進運動エントロピー(traslational entropy)は,増加して,その結果,自由エネルギーは減少する.Kauzmannも出もAOモデルもエントロピーに基づいて結合を説明している 4)

    注) エントロピーが高い状態とは,散らかっている状態,低い状態とは,整頓されてい状態.分子が取りうる可能性の大きさ.

    注) 希薄溶液は,理想気体の理論に近似できる.ΔG = -TΔS 5)

    高分子鎖の広がりと排除体積効果 (1983)3)

    Werner Kuhn,P.J.Floryは,それを思索した.Kuhnは分子の形の問題に深い関心を持つ続け,糸状分子に関する論文(1934)では,両端と中央の比率6:2.3:1の楕円体に近似できることを明らかにし、式(2)のように見積もった.

    [η] = (5/2)(N/M)[1+(p2/75)]・・・(1)

    [η]に対する分子の広がりωと形pの効果

    • [η] :固有粘度は棒の長さの2乗に比例する
    • ω :分子実体
    • NA :Avogadro定数
    • M: モル質量または分子量
    • p :軸比
    • 大かっこ[]: 形状因子

    ω0=(1/36)(π/3)1/2<R2>03/2・・・(2)

    <R2>0: 2乗平均末端距離

    等価セグメントの数 (n)と長さ(b)で表すと,式(3)となる

    Staudinger則の指数a(すなわち[η])=2では,直線の糸状分子,0.5はある程度まとまりかけた分子,0は完全に糸まりとなった状態.Kuhnはこの糸まりの膨張が,理想気体の状態方程式にタイル巣van der waalsの排除体積補正と本質的に同じ原因でおこるものと考えた

    排除体積効果と第二ビリアル係数

    Staudinger則は,いまだ,低分子の一般粘度式で成立するが,Schulzらにより鎖状高分子溶液(数万以上の固有粘度と分子量の関係)の浸透圧測定法が確立された(1935)

    浸透圧事態は,第二ビリアル係数A2がMの違いに関わらないことが明らかにされた.低分子の場合,A2はMに反比例する

    編集履歴

    2019/10/13 はりきり(Mr)
    文献3)のクラスター展開法の解説以降は省略
    2020/06/25 追記(排除堆積効果の説明に具体例追加)
    2023/10/27 文言整備
    2024/01/02 追記(抗体医薬の高濃度化での事例)

    文献

    1) 排除体積効果

    https://www.yodosha.co.jp/jikkenigaku/keyword/2832.html

    2) 液晶が並ぶ理由

    https://www.rs.noda.tus.ac.jp/~furuelab/lc_align.html

    3) 高分子鎖の広がりと排除体積効果 (1983)

    https://www.jstage.jst.go.jp/article/kobunshi1952/32/1/32_1_26/_pdf/-char/ja

    4) 生理現象と高分子排除体積効果(Excluded Volume Effect) ─高分子活量係数(I) (2006)

     http://physiology.jp/wp-content/uploads/2014/01/068010004.pdf

    5) エントロピーと自由エネルギー

     http://www.twmu.ac.jp/Basic/physics/entropy.pdf

  • [Bio-Edu] タンパク質の沈殿化法の原理 [2022/12/20]

    [Bio-Edu] タンパク質の沈殿化法の原理 [2022/12/20]

    はじめに

    無機塩の高濃度添加は、タンパク質を沈殿させる基本です。タンパク質溶液に対して塩を添加することで、タンパク質の疎水性という物理的性質の強度を溶液中で強めることができます。疎水性が高まると、そのタンパク質の成分である疎水性のアミノ酸や疎水性の領域が、水を避けて互いにより集まり結合します。その性質の違いは、そのタンパク質固有のアミノ酸の含有比率に応じて、タンパク質毎に沈殿化する塩の種類、濃度、溶液pH、及び当該タンパク質のタンパク質濃度などの組み合わせに応じて重合化し、やがて沈殿化します。

    • タンパク質濃度
      • 沈殿とは分子同士が互いに寄り添い凝集することです。その基本原理からすると、沈殿させたいタンパク質の濃度が高いほど、沈澱しやすくなることは容易に理解できます。
    • タンパク質の分子量
      • 分子量が大きいほど、疎水性のアミノ酸の総数は一般論として多くなることは理解できます。すなわち、疎水性アミノ酸が増えるので沈殿になりやすいのです。
    • タンパク質のアミノ酸組成の比率
      • これは、上述のタンパク質の分子量から推定するよりは、直接的に評価できる指標です。ただし、分子の立体構造上で表面に出ている疎水性のアミノ酸として多いほどという条件も付きます。
    • タンパク質のフォールディング(立体構造)の状況
      • タンパク質のフォールディングの状態とはなんでしょうか。タンパク質は、基本的に1本のペプチドの鎖が、巻き、折畳まることで、その天然の立体構造としての状態になります。この状態が、最も血液に溶けやすくなっているのです。すなわち、疎水性のアミノ酸は内側に、親水性のアミノ酸は外側に配置されることになります。ミスフォールディングすると、その状態が不整合しているため疎水性アミノ酸が外側に多く出ている状態が起こり得て、そのため分子間での疎水性同士の結合インタラクショにより沈殿形成しやすくなります。
    • 溶液のpH
      • これは、私の経験則ですが、理由をよく考えると理解ができるものと思っています。ただ、今までよく考えて小なったので、経験則だけで説明します。バッファ組成を酸性にすると疎水性が高まり、逆にアルカリ性にすると疎水性が低下します。
      • この原理を利用して、クロマトグラフィのカラムのレジンの洗浄・再生処理には、強アルカリ性のバッファが使われます。
    • 溶液の温度
      • 反応論や溶解度の話になります。温度が高いと分子のブラウン運動が大きくなり、溶解度は一般的に高くなります。逆に、温度が低くなるとブラウン運動は低下し、溶解度は低くなります。すなわち、温度が低いほど沈澱になりやすいと推察されます。しかし、反応論的には、反応しずらくなるため、疏水性を利用する疏水クロマトにおいては、タンパク質のレジンに対する反応としての吸着性は低下するため、低い温度での疎水クロマトはワークしなくなります。
    • 溶液の初期の塩濃度
      • 塩析させる場合、塩濃度を高めるので、単純に初期の濃度を問題にしているだけです。
    • 無機塩の種類と濃度
      • 塩析させやすい塩が知られています。硫酸アンモニウムがそれです。でも、疏水クロマトにはあまり相性が良くありません。そこで、もっとマイルドなNaClや、クエン酸(Na)などが使われます。

    塩を添加する方法による沈殿化の手法は、タンパクの精製に適するレジン(樹脂)がなかった昔に多用された技術です。この技術にはデメリットもあります。沈殿化したタンパク質は、沈澱を作る過程から状態を維持する過程で、タンパク質変性のリスクが高まります。理由は、沈殿化により、必要以上に強固に寄り集まったタンパク質が、水溶液に戻すときに再溶解しない場合がある事です。再溶解時に溶解しやすいようにする添加剤としての補助的に働くものがあります。グリシンなどのアミノ酸などは、その一種と考えられます。

    タンパク質の沈殿化法による精製手法の代替法が存在します。以下の課題について解決し得る方法です。それは、疏水クロマトグラフィー(HIC)です。ここでは、HICについては論じていません(はりきり)。

    沈殿化法の課題

    • 沈殿化したタンパク質には,条件によっては再溶解の困難性というリスクがあること.
    • いれまでは,工業的に遠心機は使用しにくかったが,最近では連続遠心と自動的に沈殿画分を回収できる機種も開発されている

    ホフマイスター系列

    1888年からのHofmeisterらの色々な塩を使った塩析実験から得られた塩析の強さは、ホフマイスター系列と呼ばれます。塩析効果の高い塩は利尿作用があり、逆溶解させる塩は下痢作用があると記述があります。

    タンパク質の凝集剤としての塩・有機溶媒・高分子 (2015), 生物工学, 第93巻

    https://www.sbj.or.jp/wp-content/uploads/file/sbj/9305/9305_tokushu_1.pdf

    デバイ – ヒュッケル理論

    静電相互素作用が主たる原理であるとするとデバイーヒュッケル理論で説明できる。しかし、実際には、タンパク質の塩析曲線はベルシェイプを示し、塩の種類によって異なる曲線を示すとの報告(1932年のGreenら)がある。すなわち、静電相互作用だけでは説明がつかず、別の相互作用や水の構造変化が影響していとる予想されていた。

    イオンは水の水素結合ネットワーク

    しかし、イオンは水の水素結合結合ネットワークに影響を与えないという論文が報告(2003)され、溶液中の水の構造を変えるのではなく、タンパク質の表面にある水和水に影響して、タンパク質の性質に影響しているのであろうと考えられた。

    その理屈は、コスモトロープが水和水の秩序化→表面張力の増加→溶液は表面を減らす→タンパク質が凝集する。この理論は、リゾチームの凝集速度と溶液の表面張力の間に、正の相関があるとの結果と矛盾しない。

    塩の種類により水和水の量に変化を生じさせていることについては、選択的相互作用の量として定義すると、

    選択的相互作用の量 =塩(溶質)がタンパク質に結合している量 − 水和水により脱離してしまつた溶質の量、と定義する。値が正であれば、結合している溶質の量の方が多い、負であれば、結合している水和水の量の方が多い。

    硫化物イオンの選択的相互相互作用の量は、塩化物イオンより小さい値を示すし、硫化物イオンは、塩化物イオンと並べて、タンパク質表面から選択的に排除されていることになる。

    ホフマイスター系列

    塩析する能力を示す。

    塩析しやすい (コスモトロープ) > CO3 > SO4 > H2PO4 > F > Cl > I > SCN > NH4 > K > Na > Li > Ca > Mg > 溶解 (カオトロープ)

    ホフマイスター系列は、周期表との規則性が見られる。

    ハロゲン属では、 周期表順に同じく、

    塩析しやすい > F > Cl > Br > I > 溶解

    である。

    アルカリ金属のカチオンでは、前述の逆となっている。したがって、沈殿材傾向は、イオンの半径や電子密度、質量で説明できることを示唆している。ただし、硫酸イオンやグアニジウムイオンなど複雑なイオンとは別の説明が必要と考えられる。

    タンパク質の溶解度

    一般的に、タンパク質の溶解度は、イオン濃度を増加させると増加し、それは極大値があり、ベルシェイプを示す。

    デバイーヒュッケルの理論

    デバイーヒュッケル理論で説明すると、塩を添加していくと、溶解から凝集まで一直線に状態変化する。低濃度では、静電遮蔽によってタンパク質の分子間の反発力が静電遮蔽により弱まる→分子の容積が減る→溶解度が増す、と説明できる。更に塩を加えていくと、タンパク質間のファンデンワールス力や疎水性相互作用などの引力が強まる→凝集する、と説明できる。しかし、実際には、溶解→凝集→溶解なるため矛盾がある。

    コスモトロープ

    コスモトロープ; kosmotropeは,水の水素結合ネットワークを秩序化(コスモス)する。Structure Makerとも呼ぶ.

    タンパク質表面の水和水について考えてみると、溶解状態のタンパク質液が、凝集するまでのイベントは、以下の様になる。

    「秩序化」→「気液界面の表面張力を増加させる」→「広くなった界面は不安定になる」→「溶液は安定化させようとする」→「表面を枯らそうとする→タンパク質はより集まる」→「凝集する」

    カオトロープ

    カオトロープ; chaotropeは,水の水素結合ネットワークを無秩序化(カオス)する。溶解する理論すは、上述の逆の理屈である。Structure breakerとも呼ぶ.

    水構造緩和に対するコスモトロープとカオトロープ塩の影響

    https://bibgraph.hpcr.jp/abst/pubmed/33031702

    表面張力

    水和を理解するための指標の一つ。surface tension, 表面をできるだけ小さくしようする性質。

    有機溶剤

    古くからDNA/RNAの沈殿材として用いられてきた。タンパク質への応用はアルコールによる血漿タンパク質の沈殿法から始まっている。

    原理は、水溶液の伝導率を低下させ、タンパク質間の静電反発力を強める結果、溶解度が減少するといわれるが、それだけではなく、有機分子とタンパク質の相互作用についても考慮する必要がある。

    エタノールとジオキサンの検討では、アミノ酸やペプチドの有機溶剤に対する溶解度を調べた論文では、疎水性側鎖を安定化させ、親水性の側鎖やペプチド結合を不安定化させることがわかっている。

    還元Albの検討では、エタノールは、タンパク質の疎水性部分と相互作用し変性させながら溶解度を上げるが、荷電残基の影響によりタンパク質の溶解度は低下した。

    ハロゲン系アルコールの検討では、50%トリプルオロエタノール中では、主鎖の間にできる水素結合が弱められる結果、αベリックス構造に富んだ構造に変性するが、溶解度は高くなり、最終的には、透明なゲルになる。

    エタノール中でのタンパク質の凝集の制御は、わずかなpHシフトにより可能である。凝集を防ぐにはpHをpIから外すことである。

    ①構造変化を伴う疎水性の変化

    ②溶液の伝導率の低下

    ③相互の非極性領域の相互作用

    ④相互の荷電残基の相互反発

    高分子

    高分子の中でもPEGは無毒であり、よく使用され、無荷電である。PEGは、タンパク質の選択的水和を促す。

    芳香属アミノ酸では、その溶解度は増加する。高分子が存在すると、タンパク質が存在できる空間が狭くなる。これを排除体積効果という。

    PEGは、以下の2つの作用を有する。

    ① 排除体積効果によるタンパク質の安定化と凝集

    ②弱い変性作用(疎水性アミノ酸に結合)によるタンパク質の不安定化と溶解促進

    また、高分子は、タンパク質のFoldingにも影響し、高濃度のPEGや多糖では、変性状態を不安定化させるので、ネイティブ構造が安定化し、Folding速度が増加する。

    編集履歴

    2020/11/02 追記 : はじめに
    2021/05/21 文言整備
    2021/06/01,追記(「はじめに」の説明を更に補充)
    2022/09/04,文言整備(課題として「取扱いとして液状での操作が悪いこと」を削除,遠心機は自動連続遠心機などの機種が開発されてきたことから,遠心機の取り扱い上の課題は低くなっていること,を追記)
    2022/11/24,文言整備
    2022/12/20,追記(カオトロープ,コスモとロープの英単語)
  • [rAAV-Edu] rAAV9の精製方法 – 特許, 2017 – ID2566 [2023/10/23]

    [rAAV-Edu] rAAV9の精製方法 – 特許, 2017 – ID2566 [2023/10/23]

    概要

    リコンビナントAAV(rAAV)の大規模精製方法に関する方法特許(Method Patent)です.

    精製のためのスタート原材料は,rAAVを発現した細胞培養上清です.

    精製ステップは,2段のクロマトグラフィーになっています.1段目には,高い塩濃度で吸着が可能な疎水クロマト,2段目には,低塩濃度で吸着が可能な陰イオンクロマトです.

    以上のステップにより,目的遺伝子を包含していな不要なウイルス粒子を効率的に除去可能であるとしています.

    rAAV9の精製条件

    当該特許は、現時点では「国際調査報告公開」です。

    特徴的なのは、pH10.2を採用していることです。タンパク質にとってpH8以上のアルカリ性は、タンパク質に良い条件ではありません。それと、システイン残基のSS結合が緩むのが、pH8から上のpHです。それをpH10.2を使っているのは、それでしか精製できないからでしょう。ある程度のタンパク質の劣化を許容しているということですが,劣化も精製度もコントロールできるのであれば,品質上問題ではありません.ただし,その結果が効力や副作用などに影響する場合は,投与の仕方を工夫する必要性が生じるでしょうか,それも臨床試験で確認していけばいよのです(Mr.Harikir, 2020/10/01)

    • Buffer A: 20mM Bis-Tris propane (BTP), pH10.2
    • washing: 10mM NaCl, 20mM BTP, pH10.2
    • gradient: 10mM to 190mM NaCl
    • correct rAAV9 by A260/A280 ratio monitoring

    クレーム

    1. AAV9の分離方法.pH10.2条件下の陰イオン交換クロマトグラフィーに吸着し、塩濃度勾配で溶出させA260とA280でモニタリングし、A280/A280の比率でAAV9 full capsideを回収
    2. A260/A280比が1未満から1以上になる
    3. 溶出ピークにおける伝導度が20mMから190mN NaCl相当となる
    4. AAV9中間体は50nM(50mMばはないのか、typo? 各所み見られる) NaCl相当で溶出する
    5. 不純物が10%未満
    6. 純度は少なくとも95%
    7. many more

    国際特許の権利発生までのフローは、このリンクを参照のこと。

    国際特許検索は、このリンクを参照のこと。使用方法は、このリンクを参照.

    特許庁 実務者向け説明資料は、このリンクを参照のこと.

    文献

    特許

    WO 2017/160360 A9, SCALABLE PURIFICATION METHOD FOR AAV9

    https://patents.google.com/patent/WO2017160360A9/en

    編集履歴

    2019/10/15 Mr.HARIKIRI
    2020/10/01 追記(pH10.2について)
    2023/10/23 追記(pH10でウイルスの品質に影響はあるだろうが,開発段階では問題にせずに,先に進むのが良い)
    2023/10/24 追記(概要)
  • [rAAV] AVB SepharoseによるrAAVの精製, 2009 – ID2461 [2019/09/28]

    [rAAV] AVB SepharoseによるrAAVの精製, 2009 – ID2461 [2019/09/28]

    はじめに

    rAAVを特異的に精製が可能なAffinity resingの紹介です.

    rAAV (recombinant AAV)は、天然に存在するAAV(ウイルス)を遺伝子改変したものです。一般的にウイルスの電荷は負であるため、精製純度を高めるには物性を利用して陰イオン交換体に吸着・溶出(AEX)させてる手順で可能です。しかし、負の電荷を持っている物質は、精製対象となるウイルスを含む培養液には,多種多様な不純物が含まれています.そのため、このAEXは特異的な精製方法ではありません。そこで、特異的にAAVに結合性を有する精製基材が求められています。

    特異的な精製基材

    AVB Sepharose (TM) によるsf9細胞由来のrAAVの精製

    以下は,サンプルとしてバキュロウイルスで発現させたAAVを使用し,AVB Sepharoseを用いた精製手順です.

    1. Sf9 cell (10e8)のバキュロウイルスによるTransfection 1hr処理
    2. その後3daysの培養後
    3. cellをharvestして、Detergent処理して抽出液を回収
    4. capside化しなかったDNAなどをBenzonase処理により分解処理
    5. Affinity Column精製 (10 mm x 100 mm, AVB Sepharose High Performance)
    6. Washing: PBS(pH7.4)
    7. Elution: low pH glycine-HCl (pH2.7)
    8. Elution peak tiger: 1.7 x 10e13 particles/mL
    9. Purity: >90% (4-12% SDS-PAGE)
    10. AAV-1のVP1(81.4kDa), VP2(66.2kDa), VP3(59.6kDa)

    Abbreviations: NRP, nuclease-resistant paticle; TU, transduction unit.

    評価

    nuclease resistance particles/cell: 3.7 x 10e4 ~ 9.6 x 10e4

    1. ウイルス粒子内にウイルスの遺伝子が完全にパッキングされていれば,necleaseによる抵抗性があるという意味.
    2. 今回の1 step精製方法による回収量は,1つの細胞当たりに3.7 x 10e4 ~ 9.6 x 10e4のnuclease抵抗性のウイルス粒子を回収できた.

    文献

    A Simplified Baculovirus-AAV Expression Vector System Coupled With One-step Affinity Purification Yields High-titer rAAV Stocks From Insect

    https://www.sciencedirect.com/science/article/pii/S1525001616308000

    編集履歴

    2019/09/28, Mr.Harikiri
    2022/01/12,追記(はじめに)
    2023/10/25,文言整備

  • [rAAV-Lab] AAVの発現・精製から動物試験までの手順をNovagenのAAV精製キット説明書から知る – ID2407 [2019/09/26]

    [rAAV-Lab] AAVの発現・精製から動物試験までの手順をNovagenのAAV精製キット説明書から知る – ID2407 [2019/09/26]

    アイキャッチ by DALL:E3

    はじめに

    AAV vectorを精製するNovagenのキットの紹介です。私たち研究者のナレッジにしてしまいしょう.

    手順は,(1)前培養、(2)トランスフェクシ,さらに(3)後培養(AAV増殖)

    (4)ハーベトス,(5)当該キットによる精製,(6)100kDaのUF膜を用いた濃縮,および(7)除菌ろ過で精製サンプル取得というのが,AAV vector取得の手順です.

    その後,目的のDNAが取得できているか評価するためには(8)AAV vectorからDNA抽出、(9)PCRによる目的遺伝子の確認、(10)動物への投与に至ります.

    Purification of Adeno-associated Virus (AAV) Vectors Using Norgen’s AAV Purification Kit
    NORGEN Biotek Corp.

    AAV Production

    1. 培養条件: HEK細胞と濃度,培養スケール,培地組成
      • Cell seed 10e7 HEK293 cells/15cm plates,
      • DMEM, 10% FBS, 2mM L-glutamine,
      • penicillin/streptomycin
    2. トランスフェクション: 培養1日後に細胞に封入させる遺伝子(pDNA)
      • Transfection (plasmids: rep/cap, genome, helper, containing the inverted terminal repeat (ITR) )after one day
    3. 後培養: トランスフェクション1日後に培地交換
      • Change media after one day, DMEM+L-glutamine (no serum)
    4. ハーベスト: 上清回収は後培養後3~6日
      • Harvest after 3-6days

    AAV Purification

    5. AAVの精製: AAVを増殖させた培養液を用いて精製します.

    • For in vitro and vivo, 300mL of AAV9 containing media
    • 33mL fo 300mL ->Norgen AAV purification kit -> eluate (9.9mL) ->

    6. 濃縮: 遠心型のUF膜を用いた濃縮

    • concentration 100kDa centrifugal filter unit Amicon Ultra-4
    • Collection: 0.5mL

    7. 除菌ろ過 (0.22μm)

    • 吸着が少ないタイプを使用(例えばDurapore)

    DNA Extraction

    8. DNAの抽出:

    • Sample,5μL + 4μL(2 units) DNase (Norgen’s Kit) ->
    • Incubation 37’c for 30min ->
    • EDTA add final 5mM ->
    • Heating 90’c for 20min (inactivation DNase)

    qPCR Quantification

    9. qPCRによる目的遺伝子の確認

    In vitro Transduction with AAV

    10. 動物投与試験: In vivo administration of AAV

    • Purified sample (Concentrated by UF 100kDa)
    • Dilution to 4 x 10e11/0.5mL
    • 2 divided volume
    • 2 mice C57BL/6, ~1 x 10e11/mice
    • mice tissues harvesting 1m post transduction

    文献

    NORGEN: Purification of Aden-associated Virus (AAV Vectors Using  Norgen’s AAV Purification Kit

    編集履歴

    2019/09/26, Mr.HARIKIRI
    2023/11/07, 文言整備

  • [Bio-Equip] Thermo Fisher 「CaptureSelect」 – AAV1~AAXをキャプチャリングできるAffinity resin – [2019/09/21]

    [Bio-Equip] Thermo Fisher 「CaptureSelect」 – AAV1~AAXをキャプチャリングできるAffinity resin – [2019/09/21]

    ID2320

    CaptureSelect

    CaptureSelectは、複数種類のアデノ随伴ウイルス(AAV)に対応するアフィニティ精製用の樹脂(resin)です。

    抗体医薬での精製方法がプラットフォーム化されているように、遺伝子治療薬のデリバリーシステムであるAAVの精製に欠かせない担体です。

    CaptureSelectは、抗体医薬のキャプチャリングとして使用するProtein Aレジンに相当するステップに使用します。

    動画による説明 : CaptureSelect

    ラクダ抗体を利用したAffinity Resin技術

    Binding Capacity: >10e13~10e14

    ウイルスベクター精製用 POROS CaptureSelect 樹脂および試薬 , より

    再生処理

    吸着・溶出してAAVを精製した後は、レジンの再生処理が必要です。十分な洗浄を行って、再利用することで実製造でのコスト低減が可能でなければなりません。0.5M NaOHなどのアルカリ再生処理が可能であることに越したことはありませんが、リガンドがタンパク質なのでアルカリ洗浄には対応していないようです。3M GuHClでの再生処理が可能であるので、取り敢えずは合格というところでしょうか。本当はアルカリ耐性が欲しいところですが。

    • Resistance: 4M Ures, 3M GuHCl

    文献

    1) データシート

    Enabling technologies for efficient downstream processing of biosimilars, vaccines and gene therapy vectors:

    https://www.thermofisher.com/content/dam/LifeTech/latin-america/promotions/pdf/bioproducao/12-Shelly-Parra-Efficient-downstream-processing-of-biosimilars-vaccines.pdf

    編集履歴

    2019/09/21, Mr.Harikiri
    2021/11/02,追記(解説、再生処理)

  • [rAAV-DSP] AVB Sepharose High Performance – ID2292 [2019/09/21]

    [rAAV-DSP] AVB Sepharose High Performance – ID2292 [2019/09/21]

    AVB Sepharoseの概要

    吸着可能なAAVの血清型

    • AAV1
    • AAV2
    • AAV3
    • AAV5

    Resinの特性

    • Binding Capacity: >10e12 vg/mL of resin
    • 組換え酵母で作られた蛋白質(14kDa)
    • Resingの安定性: 文献

    概要

    低pH溶出と比較して、高pH溶出および0.5または1.0 Mアルギニンでは、収量は低下したが、アルギニンを含む高pH溶出バッファーは、AAV純度が高くなることを示しており(260/280)、高pH溶出は、低pHでは敏感なウイルスを精製するための代替手段となる。

    Elution bufferの種類

    • EB1 0.1 M sodium acetate, 0.5 M NaCl, pH 2.5
    • EB2 0.1 M sodium acetate, 0.5 M NaCl, 0.5 M arginine, pH 10.0
    • EB5 20 mM Tris-HCl, 2.5 M MgCl2, pH 8.0
    • EB6 0.1 mM sodium acetate, 2.5 M MgCl2, pH 2.5
    • EB7 0.1 M glycine, 0.5 M NaCl, pH 3.0
    • EB8 20 mM Tris-HCl, 0.5 M NaCl, 0.5 M arginine, pH 10.8
    • EB9 1.5 M NaCl, 0.02% (w/v) TweenTM 80, 50% (v/v) ethylene glycol, 20 mM L-histidine, 20 mM CaCl2, pH 6.
    Load Sample/Column information
    • カラム : Tricorn 5/50 (1 mL column volume)
    • レジン : AVB Sepharose High Performance, 1 mL
    • 平衡化バッファ : 20 mM Tris-HCl, 0.5 M NaCl, pH 8.0
    • ロードサンプル : rAAV, 7x10e10 vg/mL x 20 = 1.4x10e12 in Equilibration buffer / 0.2 μm filter, 20 mL
    • 線流速 : 153 cm/h
    • 溶出液評価: AAV ELISA測定
    Study 1
    1. 1st Elution buffer: EB1(recovery 120% of 130% total recovered virus: batch wiseと結果が真逆)
    2. 2nd Elution buffer: EB8 (recovery 6%)
    Study 2
    • Elution buffer : EB3(recovery 72% of 73% total recovered virus
    Study 3
    • Elution buffer : 20mM Tris-HCl, 0.5M NaCVl, 1.0M arginine, pH10.8 (recovery 62% of 64% total recovered virus)

    AVB SepharoseTM High Performance, GE Healthcare

    https://gels.yilimart.com/Assets/Images/doc/file/28411211_DATAFILE_01.PDF

    編集履歴

    2019/09/21, Mr.HARIKIRI