タグ: vaccine

  • 気になる企業 – Precision NanoSystems Incは、mRNA-LNPを作る装置 “NanoAssemblr” を擁してCOVID-19に挑む  [2020/05/28]

    気になる企業 – Precision NanoSystems Incは、mRNA-LNPを作る装置 “NanoAssemblr” を擁してCOVID-19に挑む [2020/05/28]

    Precision NanoSystems Inc

    Precision NanoSystems Inc (PNI)は、RNA、DNA、CRISPR、低分子医薬品、COVIDワクチン、治療法を開発して患者に迅速にアイディアを提供する技術とソリューションのグローバルリーダーです。

    https://www.precisionnanosystems.com/

    • mRNAワクチンプラットフォーム(mRNA-LNP)によるワクチン製造開発とスケールアップ
      • NanoAssemblr(R) Spark(TM)
        • 多条件検討用
      • NanoAssemblr(R) GMP system
        • 複数の顧客に移転実績が有る
    • 独自技術によるRNAデリバー技術
      • NxGenマイクロ流体技術
      • 自社内に、NanoAssemblr(R)を400台配置
      • 製剤用処方の独自ライブラリを持つ
    • 提供サービス
      • 機器、試薬
      • 共同研究(一部CRO的でもある)
      • CanSino biologicsと共同研究締結(2020/05/20)、以下参照。

    CanSino BiologicsとPrecision NanoSystemsがCOVID-19 RNAワクチンを共同開発するためのコラボレーションを発表 (2020/05/20)

    それぞれは,天津、中国およびVANCOUVERの企業、2020年5月20日/ CNW /-CanSino Biologics Inc.(CanSinoBIO、HK6185)とPrecision NanoSystems(PNI)は本日、COVID-19に対するmRNA脂質ナノ粒子(mRNA-LNP)ワクチンの共同開発契約を発表した.


    COVID-19 mRNA-LNPワクチン候補をヒトの臨床試験に向けて、CanSinoBIOは前臨床試験、ヒトの臨床試験、規制当局の承認および商品化を担当.
    CanSinoBIOは、ワクチン製品をアジア(日本を除く)で商品化する権利を有し、PNIは他の国々の権利を保持.
    契約には、非公開の支払いとロイヤリティが含まれる.

    NanoAssemblr(R) Spark(TM)

    Sparkという製品は、マイクロリットルの製剤を調製できます。原料をピペットで添加してスタートボタンを押すだけです。処理時間は、10秒程度/条件で、数百の配合は割合を数時間で処理し、各条件の製剤を取得できます。

    • 自動配合装置
    • <10秒/1配合、DoEデータ取得への適用
    • 無菌/バイオセーフティの操作が可能で、そのまま培養細胞に添加可能
    • 原理はスケーラビリティがあり、将来のスケールアップが容易

    https://www.precisionnanosystems.com/our-technology/spark

    Scalable manufacturing is a significant challenge to making revolutionary nanomedicines available to patients in need. 

    Precision NanoSystems Incの技術

    2018年、脂質ナノ粒子(LNP)製剤であり、FDAの承認を受けた最初の低分子干渉RNA治療薬であるPatisiranのFDA承認により、非ウイルスRNAデリバリーの最高技術としてLNPが確立されました。 同時に、マイクロ流体混合を利用するNanoAssemblr®プラットフォームは、100%に近いカプセル化効率でさまざまなタイプの核酸をカプセル化するLNPのシンプルで堅牢かつスケーラブルな製造方法として実証されています。 LNPは、in vitroおよびin vivoでの遺伝子ノックダウンまたは遺伝子発現研究のための多様なオプションを提供します。 NanoAssemblr SparkTMは、マイクロ流体混合の追加の利点を活用します:新規脂質やmRNAなどの高価値材料を保存するマイクロリットル規模の製剤。 超少量の製剤と迅速でシンプルかつ再現性のあるプロセスのこのユニークな組み合わせにより、SparkはmRNA-LNP製剤のスクリーニングと初期の前臨床開発のための理想的なプラットフォームになります。 効果的なスクリーニングプログラムは、次世代のデリバリーテクノロジーとナノ粒子治療法を開発および最適化するためのパラメータースペースを大幅に狭めることができます。
    ナノ医薬品の早期発見と開発における一連の医薬品有効成分、賦形剤、製剤パラメーターのスクリーニングにより、より集中的に
    パラメータスペースを狭めることにより、後の段階で効率的に開発できます。 この目的のために、製剤の特性または活性の観察された違いが、ナノ医薬品の合理的な設計を通知する組成または条件の制御された変化に起因する可能性があることを保証するために、少量での高速で再現可能なナノ粒子の生産が必要です。 さらに、これを少量で達成すると、APIと賦形剤の使用が最小限に抑えられます。これは、発見段階では、入手が制限されたり、入手に費用がかかったり、生産に手間がかかる場合があります。
    特に、低分子干渉RNA(siRNA)、ガイドRNA(gRNA)、メッセンジャーRNA(mRNA)、プラスミドなどの細胞の遺伝子操作に使用される有効成分は、不足しているか非常に高価です。 非ウイルス性核酸送達システムは、mRNAワクチン1、2、免疫腫瘍学3、標的腫瘍学4-6、CRISPR / Cas9遺伝子編集7-9、およびまれな疾患の治療10、11などの革新的な治療を可能にしているが、かなりのニーズが残っている 核酸デリバリーシステムの基本的な理解を改善し、遺伝子デリバリーナノ粒子の品質と性能を改善するためのさらなる革新のため。 具体的には、これらのペイロードをカプセル化し、保護し、病変細胞に送達するために使用されるナノ粒子賦形剤のさらなる革新が、分野を前進させるために必要です。 これらの賦形剤は、その革新的な性質により、大規模で低コストの商品スケールではほとんど利用できません。
    したがって、発見空間の研究者に適した遺伝的ペイロードを含むナノ粒子の堅牢で再現性のある少量生産の分野では、満たされていないニーズがあります。 たとえば、in vitroスクリーニングでマイクロリットルのみが必要な場合、Tチューブ混合の最小容量は10 mL程度です。 このため、研究者たちは粗ピペット混合法を使用して、複雑な核酸ナノ粒子製剤のボトムアップナノ沈殿を実行しています。 ピペットとの混合はほとんど制御を提供しません、オペレーターです
    図1.)ナノ粒子を製造するためのマイクロ流体混合技術:溶解した脂質を含む有機溶媒と核酸を含む水溶液
    NanoAssemblrカートリッジの2つの注入口チャネルに注入されます。 層流の下では、2つの溶液はすぐには混合されません。
    しかし、チャネルに組み込まれた微視的な機能により、2つの流体が混ざり合います。
    分子が拡散によって互いに相互作用する、制御された再現可能な方法で。 1ミリ秒以内に2つの流体が完全に混合され、核酸がロードされたナノ粒子の均一な自己組織化をトリガーする溶媒極性の変化を引き起こします。

    mRNA Lipid particles – Robust low-volume production for screening high-value nanoparticle materials – Precision NanoSystems Inc, Vancouver,BVC, Canada –

    https://www.precisionnanosystems.com/docs/default-source/pni-files/app-notes/spark-mrna-appnote-1018.pdf?sfvrsn=50662346_0
    編集履歴
    2020/05/28 はりきり(Mr)
  • [Kw] ラニチジン – 胃薬に使用されるヒスタミンH2受容体拮抗薬 – 製造過程/保存過程で発癌物質NDMAが生成されやすいらしい

    [Kw] ラニチジン – 胃薬に使用されるヒスタミンH2受容体拮抗薬 – 製造過程/保存過程で発癌物質NDMAが生成されやすいらしい

    ラニチジン

    (ranitidine)は、胃薬に使われておりヒスタミンH2受容体拮抗薬です。その作用は胃酸の分泌を抑制します。先発は、グラクソ・スミスクラインです。

    その胃薬の一部に「ラニチジン」という成分が含まれていて、それに発がん性のN-ニトロソジメチルアミン(NMDA)が含まれていたという報道が2019年10月頃からありました。

    後発品が多数出ているのですが、世界の複数の医薬品会社が自主回収をしているとの報道もありました。

    今回のラニチジンのNDMA問題の真相は、まだはっきりしていないようですが、分子構造のリスクから、(1) 製造工程で不純物として生じやすい、分子構造と安定性のリスクから、(2) 保存状態によって分解してして生じる、と考えられています。

    まとめ

    • ヒスタミンH2受容体拮抗薬
    • 先発開発会社は、グラクソ・スミスクライン
    • 製造過程、保存状態で、発がん性のNMDAが生成される
    • NMDA : N-ニトロソジメチルアミン

    参考文献

    ラニチジン、分子量 350.86
    KEGG – より

    https://www.kegg.jp/medicus-bin/japic_med?japic_code=00056810

    FDAがすべてのラニチジンの回収を要請 保管条件によってNDMAの濃度上昇の可能性(1/2) 2020/04/06 – PHARMA TECH JAPAN ONLINE – より

    https://ptj.jiho.jp/article/139724

    厚労省医薬局 ラニチジン問題 化学構造の特性から「原薬及び製剤の製造工程でNDMAが生成される可能性」に言及 2019/10/30 – ミクスonline – より

    https://www.mixonline.jp/tabid55.html?artid=68278

    全企業自主回収の抗潰瘍薬・ラニチジン製剤に「終売」の動き 化学構造が原因か 2019/10/10 – ミクスonline – より

    https://www.mixonline.jp/tabid55.html?artid=68186

    ラニチジン、発がん性物質NDMA検出でクラスI自主回収-PMDA 2019/10/04 – 医療NEWS – より

    https://www.mixonline.jp/tabid55.html?artid=68186

    編集履歴

    2020/05/17 はりきり(Mr)
    2020/06/07 追記(まとめ)
    2024/01/20 文言整備

  • [Data Link] mRNAワクチンの情報収集 – ID15773  [2020/05/16]

    [Data Link] mRNAワクチンの情報収集 – ID15773 [2020/05/16]

    mRNA製品に関連情報収集

    バイオロジクス関連のデータリンクとしてここに格納します。

    参考文献

    mRNA 医薬品の品質・安全性評価の考え方 (2019)

    http://nats.kenkyuukai.jp/images/sys/information/20190717095649-6ABC2FA50410294C82EBEF7D74463510333BCF1FB717B3F88FCCB2CC782A63A8.pdf

    mRNA 医薬開発の世界的動向

    – 医薬品医療機器レギュレトリーサイエンス、PMDRS, 50(5), 242~249 (2019) – より

    http://nats.kenkyuukai.jp/images/sys/information/20190717095649-6ABC2FA50410294C82EBEF7D74463510333BCF1FB717B3F864612BCB0CA9F6B2.pdf

    製造方法、品質管理項目、安全性、DCと癌ワクチン
    – mRNA製品の品質・安全性評価について Quality and safety issues on mRNA medicinal products, 2018 日本核酸医薬品学会第4会年会 – より

    https://wwwr.kanazawa-it.ac.jp/wwwr/lab/iameta/pdf/20180710_Quality%20and%20safety%20issues%20on%20mRNA%20medicinal%20products.pdf

    NanoSky 2018 Vol.6

    夢の新薬『mRNA医薬』を実現に導くmRNA安定化技術を開発―外来性RNAの分解機構を解明―2018/11/15

    – 国立研究開発法人 日本医療研究開発機構 – より

    https://www.amed.go.jp/news/release_20181115-02.html

    TriLInk

    https://www.trilinkbiotech.com/therapeutic-cgmp-manufacturing

    サービス – Synthesis, Purification, Formulation and delivery
    LNP formulationのDoEによる開発

    https://www.thermofisher.com/jp/ja/home/about-us/partnering-licensing/oem-commercial-supply/therapeutics-commercial-suppy/mrna-therapeutics-commercial-supply.html?gclid=Cj0KCQjwnv71BRCOARIsAIkxW9GslLOpNZlU1C0vgNrvgPXbEN37e28yYx2s3JAvuVag2OH0abo_PjEaAnqHEALw_wcB&ef_id=Cj0KCQjwnv71BRCOARIsAIkxW9GslLOpNZlU1C0vgNrvgPXbEN37e28yYx2s3JAvuVag2OH0abo_PjEaAnqHEALw_wcB:G:s&s_kwcid=AL!3652!3!430564064287!b!!g!!%2Bmrna%20%2Bproduction?cid=bid_mol_lcs_r01_co_cp1358_pjt0000_bid00000_0se_gaw_nt_awa_awa

    通常、最大200塩基程度の化学合成するRNAを、バクテリオファージから得られるRNA転写合成では、数千のヌクレオチドを得られる

    – 長鎖RNA転写合成 (IVT)受託サービス – bio synthesis – より

    https://www.biologica.co.jp/products-service/custom-synthesis/nucleic-acid/transcription/

    https://lifescience.toyobo.co.jp/detail/detail.php?product_detail_id=34

    編集履歴
    2020/05/16 はりきり(Mr)
  • [Vc] mRNAワクチンの製造方法、moderna社とBiaseparations、その他から概略を学ぶ – ID15769 [2021/05/10]

    [Vc] mRNAワクチンの製造方法、moderna社とBiaseparations、その他から概略を学ぶ – ID15769 [2021/05/10]

    mRNAワクチンの製造方法

    moderna社のデモ・ビデオから、mRNAの開発初期の製造法、及RNAを製造委託する場合の受託会社とその製造方法について以下にまとめた。

    RNAの製造は、バイオ技術を使った方法と、低分子合成技術を使った方法で、以下ように製造できるが、タンパク質を作れるほどの長いmRNA (あるいは, pDNA)には、バイオ技術による製造方法が使われていると考えられる。今後、製造承認申請を調査しなければ詳細は不明ですが、2020/05時点で考え得る製造方法を以下に示してみました。

    • バイオ技術よるRNA製造
      • DNA plasmidを大腸菌で大量培養して複製
        • 以下の「[Bio-Edu]Plasmid DNA(pDNA)のデザイン及び、その製造方法に関する調査」を参照。
      • DNAの抽出と精製
      • DNAの linearization
      • DNAを鋳型にして転写酵素でRNAを複製
      • RNAの精製

    その後、文献調査した結果、以下の文献からmRNAをワクチンに応用する製造方法を示されたものではないが、mRNA医薬品の製造方法について言及されていたので、その方法を示しておきます。2020/05に示したmRNA製造方法と殆ど変わりませんが、一点細かいポイントですが、DNaseでテンプレートDNAを破壊する工程が必要であることがわかりました。

    mRNA 医薬品の品質・安全性評価の考え方 (2019) – 医薬品医療機器レギュラトリーサイエンス,PMDRS,50(6),300 ~ 306(2019)] –

    http://nats.kenkyuukai.jp/images/sys/information/20190717095649-6ABC2FA50410294C82EBEF7D74463510333BCF1FB717B3F88FCCB2CC782A63A8.pdf
    • 低分子合成技術によるRNA製造
      • 30年以上も前からある、固相反応により1塩基ずつ直接合成していく
      • 長いものを作ることは難しいため、タンパク質を作れるほどの長いmRNAは、現在の技術では作れないと思われる
      • RNAの精製 (陰イオン担体を使用したクロマトグラフィ)

    mRNAの一般的な製造方法

    modernaのビデオでは、一般的なフローしか説明がされていない。最近の情報として詳細に知りたい場合は、Biaseparationsのサイト*6が参考になる。

    1. 原材料の調達; Supply Chain team delivers raw materials
      • 資材調達部門による原材料の調達
    2. DNAの製造; Plasmid production (DNA)
      • プラスミドDNA構築(*2, *3)
      • 1. 鋳型DNA合成
      • 2. Plasmid DNA合成
      • 3. 大腸菌の形質転換体の調製、大量培養による増幅及び精製
      • 4. 精製Plasmid DNA
    3. mRANへの変換; mRNA transcription
      • Plasmid DNAを鋳型としてmRNAを作る
        • DNAのlinearization
        • mRNA転写
        • 注意) 転写効率は、5-メチル-Cは収率に影響しないが、2’フルオロ修飾は影響する(*1)
    4. mRNAの精製; Purification (RNase freeで実施)
      • modernaの精製方法は不明、一般的なRNA精製方法(*1)は、以下の通り。
      • [1]粗抽出→除蛋白
        • 以下のa or b
        • a. Phenol extraction followed by alcohol precipitation (フェノール・クロロホルム抽出法とエタノール沈殿:90%程度で沈殿化、70%で洗浄)
        • b. Lithium chloride precipitation (>300b(*5) )
      • [2] 精製
        1. a. Spin column purification (シリカゲル (*4) )
        2. b. GP-HPLC
    5. 製剤組成に調整; Formulation
    6. 無菌化; Sterile filtration and fill into vials
    7. 梱包とラベル; Pack/Lable

    受託会社と製造方法

    mRNAの製造受託してくれる会社として、Biologics coがあります。日本では、タカラバイオが受託してくれます。

    参考文献

    (*1) バクテリオファージによるmRNA製造委託に関する情報 – Biologics co.社

    https://www.biologica.co.jp/products-service/custom-synthesis/nucleic-acid/transcription/#highlight

    (*2)
    プラスミドDNA構築 – タカラバイオ – より

    http://catalog.takara-bio.co.jp/jutaku/basic_info.php?unitid=U100004295&recommend_flg=1&click_flg=1

    (*3)
    エンドトキシン低減プラスミドDNA大量調製 – タカラバイオ – より

    http://catalog.takara-bio.co.jp/jutaku/basic_info.php?unitid=U100009275

    核酸の精製

    核酸の精製について、参考となる文献を以下に示しました。

    (*4)
    エタノール/イソプロピルアルコールの濃度と適切なpHにより、の核酸がシリカゲルに吸着する。カオトロピックイオンの存在下でも吸着可能。
    Spin column-based nucleic acid purification – wikipedia -より

    https://en.m.wikipedia.org/wiki/Spin_column-based_nucleic_acid_purification

    (*5)
    リチウム沈殿の技術的情報
    – I want to know extraction of RNA with LiCl has an effect on syn of cDNA? – wikipedia -より

    https://www.researchgate.net/post/I_want_to_know_extraction_of_RNA_with_LiCl_has_an_effect_on_syn_of_cDNA

    https://www.modernatx.com/moderna s-mrna-technology

    最近のmRNAの製造方法として参考になる文献

    *6

    High yield mRNA production process from E.Coli to highly pure mRNA.
    Presenter: Aleš Štrancar

    Date: od demand, October 19-22, 2020

    Cell & Gene Therapy Bioprocessing & Commercialization  (digital event)

    ユーザー登録すると文献がダウンロードできます。

    https://www.biaseparations.com/en/library/seminars-webinars/1098/high-yield-mrna-production-process-from-ecoli-to-highly-pure-mrna

    関連記事

    編集履歴

    2020/05/16 はりきり(Mr)
    2020/05/17 追記 (Plasmid DNAの調製、バクテリオファージによるRNA製造に関する委託内容)
    2020/05/19 追記 (低分子合成技術によるRNA製造)2020/09/27 修正(mRNA製造フロー)、文言整備
    2020/12/04 追記 (mRNA製造に関する最近の文献*6:Biaseparations社)
  • [健康] コロナウイルス抗原検査キット(SARS-CoV-2)の原理をわかり易く解説 [2022/01/24更新]

    [健康] コロナウイルス抗原検査キット(SARS-CoV-2)の原理をわかり易く解説 [2022/01/24更新]

    はじめに

    検出感度が高いPCRよりも感度は低いものの、15分程度で抗原の検出が可能な測定方法で、「イムノクロマト」と原理を利用しています。

    2022/01/末、世界では、デルタ株からオミクロン株への感染シフトが進む中、日本においてもオミクロン株への感染シフトが進展しており、抗原検査試薬の不足が生じています。

    反応概要

    (1) サンプルは、本反応の前に、コロナウイルスと結合できる標識Antibody-3 (色素や酵素が標識されている)と混合させ前もって反応させ、「標識Antibody-3とコロナウイルス結合体」を作らせる。
    (2) 反応メンブランには、コロナウイルスに対する別抗体: Antibody-1 (ELISAにおけるサンドイッチ法と同様)と、Antibody-3に対する抗体: Antibody-2の2種類が、1ラインづづ塗布されている。
    (3) 「標識Antibody-3とコロナウイルス結合体」を(2)のメンブランに反応させる。

    図を見ながら解説

    キットは、図1のような構造になっている。図1だけでは不十分であったため、図2にも別のサイトから参照した原理図を示した。

    図1で説明する。「サンプルパッド」部分に、コロナウイルスを含む検体を添加すると、以下のような機序により2本のバンドが発色し、陽性であることを判定できる。

    1. 「サンプルパッド」(図1,黄色)にサンプル(唾液)を添加(数十μL)
    2. 「コンジュゲートパット」(図1,青色)には、色素や酵素が標識されたコロナウイルスに対する抗体(標識Antibody-3)が染み込ませてある。標識とは、酵素や色素をその他の物に結合させた状態を呼ぶ。
    3. 「サンプルパッド」から「コンジュゲートパッド」にコロナウイルスを含む水分が染み込んでくることで、「サンプルパッド」から「吸収パッド」への方向に、液体の流れが生じる
    4. 「コンジュゲートパット」で、標識Antibody-3とコロナウイルスが結合し、コロナウイルスとAntibody-3の比率の程度によっては、標識Antibody-3には、コロナウイルスが結合していない抗体分子も存在する。そのような状態のまま、「メンブラン」に染み込んでくる。
    5. 「メンブラン」(図1,水色)には、コロナウイルスに対する抗体(Antibody-1)と、コロナウイルスに結合でき標識Antibody-3に対する抗体(Antibody-2)が、それぞれ、2箇所(2ライン)に塗布してある(結合しているので位置は移動しない)。このメンブラン上を、4のサンプルが順次染み込みながら進む(これをクロマトと呼び、免疫反応も関連しているので、イムノクロマトと言う)
    6. 最終的には、「メンブラン」中のテストラインには、「標識Antibody-3とコロナウイルスとAntibody1の3つの結合体」が出来上がり、標識Antibody-3による発色ラインが現れる。
    7. 更に、「メンブラン」中のコントロールラインには、「標識Antibody-3と(コロナウイルスの量に反映されてされた量のコロナウイルス)とAntibody-2の2又は3結合体」が出来上がり、標識Antibody-3による発色ラインが現れる。
    図1. ForDxから参照した原理図
    図2. ACUTECAREから参照した原理図

    参考文献

    イムノクロマト法とは – ForDx -より

    https://www.fordx.co.jp/immunochromatography/

    イムノクロマト法- ACUTECARE-より

    https://www.acute-care.jp/ja-jp/learning/course/immunoassay/ria/ic

    SARSコロナウイルス抗原キット ADTest 対外診断用医薬品、アドテック株式会社

    SARS-CoV-2 操作方法 : https://www.adtec-inc.co.jp/wp-content/uploads/2021/07/adtest-pamphlet210712.pdf

    SARS-CoV-2 製品概要 : https://www.city.usa.oita.jp/material/files/group/49/kaigo20210204-6.pdf
    編集履歴
    2020/05/16 はりきり(Mr)
    2020/08/02 文言整備
    2022/01/24、追記(ADTest関連情報)
  • 気になる企業 – Arcturus Therapeutics – mRNAによる希少疾患とワクチン開発に特化 – ID15742 [2020/05/16]

    気になる企業 – Arcturus Therapeutics – mRNAによる希少疾患とワクチン開発に特化 – ID15742 [2020/05/16]

    Arcturus Therapeutics

    • 2013年に設立、カリフォルニア州サンディエゴ
    • Arcturus Therapeutics Holdings Inc.(ナスダック:ARCT)
    • 技術
      • LUNAR® : lipid-mediated delivery
      • Unlocked Nucleomonomer Analog (UNA) ref1)
      • chemistry
      • STARR™ Technology
        • self-replication RNAとLUNARのコンビネーション
        • 従来のmRNAと比較して、持続産生し30倍以上の効果
    • mRNA drug substance とdrug productの製造
    • RNA治療パイプライン
      • オルニチントランスカルバミラーゼ(OTC)欠乏症
      • 嚢胞性線維症
      • コロナウイルス(COVID-19)
      • グリコーゲン蓄積症3型肝炎
      • 非アルコール性脂肪性肝炎(NASH)
    • プラットフォーム
      • メッセンジャーRNA
      • 低分子干渉RNA
      • レプリコンRNA
      • アンチセンスRNA
      • マイクロRNA
      • DNA
      • 遺伝子編集治療
    • www.Arcturusrx.comを参照
    Ref1

    UNA (unlocked nucleic acid): A flexible RNA mimic that allows engineering of nucleic acid duplex stability, 2009

    https://www.sciencedirect.com/science/article/abs/pii/S0968089609006105

    編集履歴
    2020/05/16 はりきり(Mr)

    関連イベント

    2020/03/04
    Arcturus Therapeutics (NASDAQ : ARCT, サンディエゴ, US)は、デュークNUSメディカルスクール(Duke-NUS, Singapore)と共同で、シンガポール向けのコロナウイルス(COVID-19)ワクチンを開発するための提携を発表。同社の技術 STARR(TM)を使い、Duke-NUSで開発された独自のプラットフォームにより、ワクチンの有効性と安全性を迅速にスクリーニングする。

    Duke-NUS

    • 2005年設立 (Duke医学部とシンガポール国立大学(NUS)), Singapore
    • COVID-19との戦いにおいて最前線に立ち、COVID-19の最初の血清学的検査を開発
    • ウイルス分離および培養した最初のグループの1つ
  • [Bio-Edu] mRNAワクチンの剤形 – LNP; Lipid Nano Particle – [2021/12/05]

    [Bio-Edu] mRNAワクチンの剤形 – LNP; Lipid Nano Particle – [2021/12/05]

    ID15607

    はじめに

    mRNAワクチンの細胞内への伝達としてLNP技術が用いられます。Lipid Nano Particle; LNPの基礎知識を解説します。

    因みに、LNPの代わりに病原性のないウイルス (アデノウイルスなど)の外枠(殻;カラ)を使うデザインもあります。AstraZeneca社の新型コロナウイルスに対するワクチンがそれです。

    その前に、以下の参考文献の解説では、遺伝子治療薬が何を指しているのか誤解しがちなので、遺伝子治療薬について少し解説しておきます。

    在のmRNAやpDNAを使ったワクチンは、基本的に遺伝子治療薬ではありません。遺伝子治療薬は、半永久的な治療を目的として、1回の投与で治療できるようにデザインされたものです

    現在のmRNAやpDNAを用いたワクチンの場合は、その遺伝子が半永久的に体の細胞には取り込まれないデザインとなっているため、遺伝子治療薬には当たらないということです。

    また、LNP技術を使用しているのは、(1)物理化学的な安定性が低いという課題の克服と、(2)細胞の外膜(細胞膜)と融合して内容物であるmRNA/pDNAを細胞内に運搬する目的のためです。それでも、mRNAの場合、体内や細胞内に到達できたとしても(1)物理化学的な安定性が低いこと、(2)その宿主の細胞のゲノムに取り込まれることはないこと、により半永久的な治療効果は起こりません。従って、mRNAは半永久的な効果を発揮する伝子治療薬にはなり得ません。

    一方、pDNAの場合は、(1)細胞室内に永続的に存在できたり(細胞が分裂するときに、同じように細胞と共に増えることが可能にできる)、(2)細胞のゲノムに対して意図的なデザインによりインテグレーション(挿入)させたり、できるため半永久的に効果を発揮できる遺伝子治療薬になり得ます。

    以上の解説のように、現在のmRNA, pDNAを用いるワクチンは遺伝治療薬ではありません(2021/12/05, 追記 by Mr.Harikir)。

    参考文献よりLNPを解説

    以下の解説は、参考文献の一説です。

    低分子干渉RNA(siRNA)、mRNA、またはプラスミドDNAなどの遺伝子治療薬は、病理学的遺伝子のサイレンシング、治療用タンパク質の発現、または遺伝子編集アプリケーションを通じて、ほとんどの疾患を治療する潜在的な遺伝子治療を提供します。 しかし、遺伝薬を臨床で使用するためには、高度なデリバリーシステムが必要です。 脂質ナノ粒子(LNP)システムは現在、遺伝子治療薬の臨床的可能性をより高めるための主要な非ウイルス送達システムです。

    2017年に食品医薬品局(FDA)に申請され、トランスサイレチン誘発アミロイドーシス(現在は治療不可能な疾患)を治療するためのLNP siRNA薬が承認されています。

    ここでは、まず、全身投与後の肝細胞の標的遺伝子をサイレンシングできるLNP siRNAシステムの開発につながる研究をレビューします。 続いて、LNPテクノロジーをタンパク質置換、ワクチン、および遺伝子編集アプリケーション用のmRNAおよびプラスミドに拡張するために行われた進展が要約されています。

    遺伝子治療用のLNPシステムの起源は、低分子の薬剤用としてリポソーム薬物送達システム(リポソームシステム)の開発にあります。リポソームシステムは、二層構造の脂質を含むLNPです。 ホスファチジルコリン(PC)などの多くの膜脂質は、水性媒体に分散すると自発的に二重層構造となります(文献中のFigure 1より)。

    • Ethanolに以下を混ぜる
      • cationic lipid
      • structural lipid
      • PEG lipid
      • cholesterol
      • nucleic acid
    • 急速なミキシング
      • ミキシングの条件、時間により最適な大きさ、強度、能力のものを作る

    ドラッグデリバリーアプリケーションに有用であるリポソームには、いわゆる大きな単層構造(large unilamellar vesicles; LUVs)です。 サイズは100nmの範囲です。現在、世界中の規制当局によって承認されている、静脈内(iv)投与用の9つのリポソームベースの薬剤があります(表2を参照)。

    これらのシステムのほとんどは、小分子抗がん剤を含み、iv後の腫瘍部位で優先的に血管外遊出する小さな(<100 nm直径)LNPシステムです。この大きさは腫瘍組織へ浸透(enhanced penetration and retention; EPR)できます。EPR効果は、循環寿命の長いLUVと組み合わせると、腫瘍の送達を10倍以上改善できるとされています。

    より詳細は、以下の文献をご覧ください。

    Lipid Nanoparticle Systems for Enabling Gene Therapies (2017)

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498813/

    LNPの組成

    次に紹介する参考文献では、以下の原材料でLNPを作っています。

    • 1,2-distearoyl-sn-glycero-3-phosphorylcholine (DSPC)
    • cholesterol
    • ionizable cationic lipid (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl4-(dimethylamino) butanoate (DLin-MC3-DMA)
    • (R)-2,3-bis(octadecyloxy)propyl-1-(methoxy polyethylene glycol 2000) carbamate (PEG-DMG)
    • (R)-2,3-bis(stearyloxy)propyl-1-(methoxy poly(ethylene glycol)2000 carbamate (PEG-DSG) 

    siRNAに関する参考文献中で紹介されている文献のレビュー1), 2)では、以下の記載がある。

    LNPは一般に直径が約50 nmで、コレステロール(cholesterol)、リン脂質(phospholipids)、ポリエチレングリコール結合脂質 (polyethylene glycol-conjugated lipids)、およびイオン化可能(ionizable)なカチオン性脂質(cationic lipids)で構成されています。

    • cholesterol (コレステロール)
    • phospholipids (ホスフォリピッド)
    • polyethylene glycol (ポリエチレングリコール) – lipids
    • ionizable cationic (“イオンになりやすい正荷電体”)lipids

    以下の参考文献中の文献レビューでは、LNPの見かけのpKaが約6.4のイオン化可能(ionizable)なアミノ脂質(amino lipids)は、キーコンポーネントであり以下を可能にする、とある。

    • 低pH(≤4)でのLNP生成中の効率的なsiRNAカプセル化
    • 生理的 (physiological)なpHで循環するLNPの中性表面電荷を確保し、
    • ターゲットの細胞内在化後のエンドソーム脱出を促進する

    Modular lipid nanoparticle platform technology for siRNA and lipophilic prodrug delivery, 2020, bioRxiv

    https://www.biorxiv.org/content/10.1101/2020.01.16.907394v1.full
    1. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28, 172–176 (2010).
    2. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl 51, 8529–8533 (2012).

    LNPを作る装置

    LNPは、以前はリポソームと呼ばれていたもので、脂質二重膜などの構造になっており、目的物を閉じ込めるための器です。

    昔は、エバポレータという減圧乾固する装置で、少量調製していましたが、現在では、Precision NanoSystems Incが連続的にNano Perticleにする装置を開発しているようです。スケーラビリティーもあり、臨床試験にも使用可能で、原理的には、コマーシャル製造でも適用可能です。

    Precision NanoSystems Incの技術

    図1.)ナノ粒子を製造するためのマイクロ流体混合技術:溶解した脂質を含む有機溶媒と核酸を含む水溶液
    NanoAssemblrカートリッジの2つの注入口チャネルに注入されます。 層流の下では、2つの溶液はすぐには混合されません。
    しかし、チャネルに組み込まれた微視的な機能により、2つの流体が混ざり合います。
    分子が拡散によって互いに相互作用する、制御された再現可能な方法で。 1ミリ秒以内に2つの流体が完全に混合され、核酸がロードされたナノ粒子の均一な自己組織化をトリガーする溶媒極性の変化を引き起こします。

    編集履歴

    2020/05/10 はりきり(Mr)
    2020/05/27 追記(Precision Nanoparticle Systems紹介)
    2021/07/08,追記(文言整備)
    2021/12/05,追記(遺伝子治療薬について解説しmRNA/pDNAを用いたワクチンはそれでは無いことを解説)
  • [Vc] mRNAワクチンとは – Sanofi, Modernaなどが開発を進めている – ID15091 [2020/05/23]

    [Vc] mRNAワクチンとは – Sanofi, Modernaなどが開発を進めている – ID15091 [2020/05/23]

    mRNAワクチンとは

    mRNAワクチンは、核酸医薬であり、核酸のモダリティに分類される。モダリティは、手段を意味しているので、以下のようなものが考えられます。

    • 低分子合成品
    • タンパク質
    • 核酸
    • ウイルス (AAV, Lentivirus, Adenovirus)ベクター

    mRNAワクチンの優位性

    mRNAの優位性について、COVID-19ワクチンとしてTranslate Bio社とmRNAを使って共同開発しているSanofi社のサイトから引用 source

    • 核への侵入を必要とせずにタンパク質生産を開始できる
      • DNAワクチンの場合は、核に入って、mRNAに転写させる必要がありますが、mRNAは、細胞質内でRibosomeによってタンパク質への翻訳が可能です
    • 迅速な開発が可能
      • タンパク質ベースやその他モダリティよりは、IT技術を駆使できれば迅速な開発は可能と思われます
    • 非ウイルスを使用した低コストの製造と安全な投与
      • 従来の生ワクチンや弱毒ワクチンなどと比較して、全くの無生物であること、それらに比べれば製造ステップは少なくてすみます

    以下に、mRNAについて文献の内容から概説1)します。

    mRNAワクチンは、体内に直接投与する。mRNAはタンパク質をコードする核酸であり、細胞質内に入り込むことができれば、細胞の機能を利用して、コードしたタンパク質が作られる。しかし、RNAは非常に分解されやすいため、医薬品化を達成した品目はない。DNAでは、染色体への相同組換の危険性を伴うが、mRNAではその危険性は全くない。

    歴史的経緯

    核酸医薬としての最初の報告は、1990年のScience論文です。動物の骨格筋に投与した実験例は2つ実施されました。

    • プラスミドDNS (pDNA)
    • mRNA

    当初、適切な遺伝子導入試薬を使えば、培養細胞へのpDNAおよびmRNAを細胞に導入(in vitro)することができ、その結果、タンパク質を作らせることができた。しかし、動物の骨格筋への導入(in vivo)では、mRNAでは、タンパク質を作らせることができませんでした。その原因は、mRNAが生体内では、非常に不安定であるためでした。

    最近のmRNAに関する研究・開発の成果は、アメリカ、ドイツが中心のようです。日本も頑張って欲しいと思います。

    mRNAを医薬にするためには

    • ARCA法 (anti-reverse cap analogues)の開発*1)
    • コドン最適化
      • 世界は、ITを駆使している分野です。ITが弱い日本で勝機があるのか疑問です。
    • 免疫原性の制御 (メチル化核酸、シュードウリジン、などは、非開示のものも多い)

    *1) DNA鋳型としてmRNAが作られますが、次ステップのmRNAからタンパク質をつくるには、mRNA5’末端にcap構造が必要であるため、mRNAにcapアナログを付加しなければ、医薬品にはなりません。しかし、cap構造の人工的な付加は、効率が低く50%程度でした。更に詳しくは、別文献を参照2)のこと。次章で述べていますが、これまでの研究では、Capの不要化も検討されているようです。

    CleanCap Technology

    mRNAへのキャッヒング技術の1つ。自然免疫応答の回避にはキャッピングが必要です。ARCA法では、Cap 0構造であるためパターン認識受容体のRIG-Iに作用してしまう。一方、TriLink BIOTECHNOLGIES社の「CleanCap」では、Cap 1構造が付加できるためRIG-Iに作用せず、飜訳効率が高い
    翻訳効率を高める新たなキャッピング技術TriLink 社 CleanCap Technology – nacalai tesque -より

    編集履歴
    2020/05/03 はりきり(Mr)
    2020/05/15 追記 (moderna社が先行するmRNAワクチン)
    2020/05/23 追記 (CleanCap法)
    2020/09/29 追記 (モダリティ)
    2020/10/22 追記 (mRNAワクチンの優位性 ~ Sanofiサイトより引用)

    mRNA医薬の構造

    医薬品に仕上げるために行われた、重要な研究項目について、以下に示されています。図には、mRNA構造が示されています。翻訳領域であるORF3)と比較して、非翻訳領域である5’UTR, 3’UTRの配列4)の改変は、比較的自由度があります。

    1. 5’ Cap

    • Capの不要化
    • 5’Capの一般的な機能wiki
      • 核外輸送
      • 5’-3’エキゾタクレアーゼ抵抗性と分解抵抗性
      • 翻訳促進
      • イントロンのスプライシング促進

    2. 5’ UTR/3’ UTR

    • mRNA輸送・翻訳など

    3. DRF

    • 翻訳効率
    • 分解耐性

    4. Poly A

    • mRNA安定化

    5. mRNA全体

    • 免疫原性の低減化
    図1. 治療用mRNAの構造

    参考文献1), p.454参照。

    mRNA医薬の方向性

    mRNA医薬は、広義の遺伝子治療の範疇であるが、ホスト細胞のゲノムへの取り込みがないことは、大きなメリットである。そのため、比較的一般的な治療にも適用が考えられる。

    • ワクチン
      • Moderna (US)
      • BioNTech (ドイツ)
      • CureVac (ドイツ)
      • GSK
    • 非遺伝性の疾患全般
    • 加齢変性疾患
    • 外傷

    課題

    • mRNAワクチン
      • 皮下投与であるため高性能なDDSは必要ない
    • 標的細胞へのDDS
      • 脂質ナノ粒子 (LNP, 非開示): 炎症反応の惹起がある。
      • ポリマー粒子: 組織浸透性が優れている
    • 免疫反応の低減化

    ワクチン

    一般的に、DDS併用でない場合、免疫賦活化作用が十分ではない。部分的にmRNAの二本鎖構造にして、抗原提示能と免疫賦活作用を併せ持つmRNAの開発も行われている。

    mRNAワクチンで先人を切っているのは、米国のmoderna社です。詳しくは、以下の記事をご覧ください。

    がんワクチン

    • 液性免疫と細胞性免疫に適用可能
    • 2017年、BioNTechのメラノーマワクチン(new-antigen mRNAワクチン)
    • PD-(L)1阻害剤 (免疫チェックポイント阻害剤)との併用。BioNTechは、Genentechと共同で臨床試験実施。CureVacはEli Lilly, ModernaはMerckと併用の臨床試験を実施。

    一般治療

    • 成長因子 (overdoseが抑制できる)
      • VEGF mRNA (心虚血疾患、二型糖尿病皮下投与、アストラゼネカ)
      • 組織再生(徐放): 軟骨、椎間板
    • シグナル
      • 非分裂成熟細胞(脳神経系など)
    • 酵素
      • 遺伝性稀少疾患(酵素補充)
    • 膜タンパク質

    特許

    天然の核酸分子の配列では、特許は取れない。

    以上

    参考文献

    1) mRNA 医薬開発の世界的動向, 医薬品医療機器レギュラトリーサイエンス

    mRNA 医薬開発の世界的動向, 医薬品医療機器レギュラトリーサイエンス,PMDRS,50(5),242 ~ 249(2019)

    http://nats.kenkyuukai.jp/images/sys/information/20190717095649-6ABC2FA50410294C82EBEF7D74463510333BCF1FB717B3F864612BCB0CA9F6B2.pdf
    2) メッセンジャー RNA 医薬を実現する DDS 開発と疾患治療への応用

    メッセンジャー RNA 医薬を実現する DDS 開発と疾患治療への応用、Drug Delivery System 31―4, 2016

    https://www.jstage.jst.go.jp/article/dds/31/4/31_343/_pdf
    3) ゲノム解析とは

    ゲノム解析とは – nite – より

    ORFは、開始コドンと呼ばれる3塩基から始まり、終止コドンと呼ばれる3塩基で終わります。また、アミノ酸に対応するコドンも解読されており、ORFの推定はコンピュータを用いて行います。

    https://www.nite.go.jp/nbrc/genome/description/analysis2.html
    4) 非翻訳領域

    非翻訳領域 – wikipedia – より

    https://ja.wikipedia.org/wiki/非翻訳領域
    5) mRNAサーベイランスとは

    mRNAサーベイランスとは、大野研究室 分子細胞生物学 Cell Signaling – より

    http://www-user.yokohama-cu.ac.jp/~ohnos/research/mRNA.html
  • [Vc] mRNAワクチンの優位性 (Morderna社) – 従来ワクチンとの比較 – ID15083 [2020/05/03]

    [Vc] mRNAワクチンの優位性 (Morderna社) – 従来ワクチンとの比較 – ID15083 [2020/05/03]

    mRNAワクチンの優位性

    最初に、核酸ワクチンと従来ワクチンとの比較で、核酸ワクチンが優位である点は、探索研究が必要ないこと、それが、最も大きな優位性です。病原となる関連物質の遺伝子配列を特定し、遺伝子組み換え技術を使って、適するモダリティに適応すれば、候補薬剤ができます。この部分が探索研究が必要ないと言っている部分です。従来ワクチンでは、その特定してから候補薬剤となるまでに、精製や免疫などが必要で、それが開発時間がある程度必要であるとして不利であると考えられます。

    核酸ワクチンには、DNAワクチンとmRNAワクチンがあります。どちらも同じものと理解してはいけません。

    Moderna社は、mRNAワクチンに注力する医薬品開発企業です。2017/03の同社ホワイトペーパーから、mRNAワクチンの優位性について概説します1)

    はじめに

    感染症を予防するワクチンは、これまでで最大の医療革新でした。CDCは、過去20年間に与えられた米国の小児ワクチン接種により以下の多くを予防できたと推定しています。

    • アメリカ人が3億2,200万の病気
    • 2,100万人の入院
    • 732,000人の死亡
    • 2,950億ドルの直接費用
    • 1.3兆ドルの社会的費用

    たとえば、1963年に麻疹ワクチンが出現する前は、このウイルスは毎年500,000人の アメリカ人に感染し、48万人が入院していました。今日では、主に外国人旅行者による麻疹の症例は年間60例にすぎません。天然痘、ポリオ、ジフテリア、百日咳、はしか、おたふく風邪、 その他多くのワクチンも公衆衛生に多大な影響を与えてきました。

    しかし、ワクチンの研究、開発、製造、およびデリバリーには革新の余地がかなりあります。

    既存のワクチンのパラダイム

    ワクチン接種の目的は、病原体(抗原と呼ばれる)そのもの、または一部分を少量で無害な用量により安全に事前曝露することで、免疫システムを構築することです。

    これにより、将来実際の病原体に遭遇した場合、既に出来ている免疫システムは病気と戦うことができ、病気を防ぐことができます。

    今日、私たちは25を超えるさまざまな疾患に対するワクチンを持っています。その形態は、

    • 弱められた病原体
    • 不活化された病原体
    • 不活化毒素
    • 病原体の部分サブユニット(構成するタンパク質)
    • 病原体の部分サプユニットの複合体

    などです。

    これら従来のアプローチはすべて、長くて複雑で費用のかかる開発機関と生産期間を伴います。

    1. 対象となる病原体/抗原は、専用の細胞培養および/または発酵ベースの生産で増殖させてから、抽出、殺害、分離、精製。これには、長くて複雑で費用のかかるプロセスが含まれます。
    2. 従来のワクチンの中には、経験的に有効性を示します(それ、なぜ機能するかを知らずに)。有効な正確なメカニズムは、ワクチンが認可されて使用された後にのみ完全に解明される場合があります。百日咳(百日咳)などの一部のケースでは、まだ有効性のメカニズムを理解できていません。
    3. 特注品であるワクチンである場合、固有の製造プロセスや製造設備、などが必要です。さらに、これらの設備投資はワクチン承認の何年も前に行わなければならず、ワクチンが最終的に失敗してこの資本を 浪費する可能性があるというリスクも大きな課題です。ワクチン開発の持続的な活動が損なわれる要因となります。
    4.  既存のワクチンは、経験則によるところが多く、アジュバントを使用して、それらが誘発する免疫応答の種類を調整することを学んでいるだけです。

    核酸ワクチン

    核酸ワクチン、即ち、DNAおよびメッセンジャーRNA(mRNA)は、病原体が疾患を引き起こすために使用するタンパク質をコードするヌクレオチド配列(たとえば、「AAAGGCC …」)をコードしています。

    これらのタンパク質は、免疫システムが認識する抗原として機能するという考えです。 このタンパク質のみでは、病原性はありません。これらのタンパク質には、病原性はありませんが、免疫応答を構築できるという訳です。

    ©2017 Moderna Therapeutics

    https://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM093833

    このアプローチには、従来のワクチンに比べて利点があります。

    1. これらの抗原の多くはすでに特定されているため、発見段階は非常に迅速です。 発見も小動物モデルでの重要なコンピュータ内(コンピュータベース)の抗原設計とワクチンの迅速なテストが可能です
    2. 生産は標準化されています。 それは、病原体または標的特異的細胞培養または発酵などの製造工程も含まない(化学合成による製造と考察される)。 ワクチンを育てる必要はありません。 その結果、単一の施設ですべてのmRNAワクチンを製造でき、単一のプロセス、資本設備、労働力を効率的に利用できます。
    3. ワクチンは、免疫系が認識する方法で自然のウイルス感染を模倣します。 それは筋肉と免疫細胞に送達され、実際の感染時に体の細胞内のウイルスDNA / mRNAを使用して行うのと同じようにヌクレオチド配列を処理します(ただし安全)。
    4. さらに、ワクチンはDNAまたはmRNAであるため、標準化されたプロセスで、より正確に制御されたステップで製造することができます。 これにより、生産がより速く、より安くなり、バッチ間のばらつきによる不必要なバッチ損失の影響を受けにくくなります。 mRNAワクチンとDNAワクチンは、モジュール性と標準化の両方において、従来のワクチンよりも格段に優れています。
    5. さらに、核酸ワクチンは、送達される抗原を正確に調整する能力に基づいて、腋生免疫と細胞免疫の間のバランスを調整する可能性があります。 このため、核酸ワクチンは、従来のワクチンアプローチでは対処が非常に難しい病原体に対処するように設計できます。

    1. DNAワクチン

    DNAワクチンの研究は30年前に始まりましたが、認可されたDNAワクチンはまだなく、ほとんどが第1相試験に残っています。

    DNAワクチンに関連する主な課題は、それらが細胞核(2つの膜を通過する、細胞質と核)を貫通する必要があることです。 次に、DNAは核でmRNAに転写されてから、細胞質に移動して抗原の産生を刺激する必要があります。 この中核となる複雑な経路は、多くの場合、DNAワクチンを送達するために、大量の投与と、電気ショックまたは金のミクロスフェアを使用して人の皮膚に投与する、しばしば痛みを伴う特別な送達デバイスの両方を必要とします。 核内に入ると、DNAワクチンは人のDNAを永久的に変化させるリスクがあります。

    • DNAワクチンが機能を発揮するには、細胞膜と細胞核の2つの膜を通過しなければならない
    • デリバリー技術が必要となる
    • 細胞核内でゲノムに組み込まれるリスクがある

    2. mRNAワクチン

    現在、臨床試験には6つの予防的mRNAワクチンがあり、そのうち4つはModerna Therapeuticsによって実施されています。 これらのワクチンは、多くの欠点に対処しながら、DNAワクチンの利点(より速く、標準化された天然の抗原の発現と産生)を組み合わせています。 DNAワクチンとは異なり、mRNAワクチンは核に入る必要がなく、DNAに組み込まれるリスクもありません。また、タンパク質ワクチンに直接翻訳されます。 その結果、mRNAワクチンはDNAワクチンのたった1/1000の用量で済み、特別な送達装置を必要としません。

    ヒトで強力な免疫を誘発する予防的mRNAワクチンの能力を示す最初に発表されたデータは、2017年4月の分子療法で発表されました。(Bahl et al。、2017)

    すべての新しいワクチンと同様に、より大きく、より多様な集団における免疫原性の持続時間とmRNAワクチンの安全性プロファイルのレベルを確立するために時間が必要です。

    しかし、mRNAワクチンの革新は、DNAワクチンを改善する機会を提供します。 これらのワクチンは身体とシームレスに作用し、実際の感染の危険なしに、自然の一連の曝露と防御を模倣します。 抗原の設計とデリバリーの正確さと標準化は、発見のスピードとコスト、開発のスピード、多くのターゲットが成功する確率、そして生産のスピード、コスト、適応性の点で、公衆衛生と商業上の利点をもたらします。

    mRNAは私たちにワクチン接種の100年の歴史における新しいパラダイムを提供します。

    • mRNAワクチンが機能を発揮するには、細胞膜を通過すればいい
    • 特別なデリバリー技術は必要ない
    • 細胞核内でゲノムに組み込まれない
    • DNAワクチンの投与量と比較して1/1000程度で済む

    The science of mRNA
    Learn about messenger RNA’s role in human biology, the instructions it provides that direct cells in the body to make proteins, and why we believe mRNA medicines may have the potential to treat a broad array of diseases.

    Vaccine Excipient Summary
    Excipients Included in U.S. Vaccines, by Vaccin

    https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/appendices/B/excipient-table-2.pdf

    Documenting Vaccination

    https://www.immunize.org/askexperts/documenting-vaccination.asp

    Vaccines Licensed for Use in the United States

    https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states

    参考文献

    1)

    mRNA Vaccine: Distuptive Innovation in Vaccination – Moderna, May 2017 –

    https://www.modernatx.com/sites/default/files/RNA_Vaccines_White_Paper_Moderna_050317_v8_4.pdf
    編集履歴
    2020/05/16 Mr.HARIKIRI
    2020/08/19 追記 (USワクチン関連情報)
  • [特許関連/記事紹介] 新型コロナウイルスに関する特許の概説記事から – ID15052 [2020/05/02]

    [特許関連/記事紹介] 新型コロナウイルスに関する特許の概説記事から – ID15052 [2020/05/02]

    記事へのリンクのみ

    新型コロナウイルスの特許について、現状を踏まえて概説している記事です。特許の学習として実務的に参考になります。

    SARS-CoV-2 Coronavirus and patents20 · 02 · 20 – ABGexperts – Irene Vázquez

    https://abg-ip.com/coronavirus-patents/?cli_action=1588405272.673