タグ: Production

  • [rAAV] rAAVの精製方法 – 澄明ろ過及び膜による  – ID2532 [2019/11/05]

    [rAAV] rAAVの精製方法 – 澄明ろ過及び膜による – ID2532 [2019/11/05]

    rAAVの精製方法

    2016年の文献よりAAVの精製について解説する。また、Pall製品による精製についても解説する。

    文献によれば、最終的には超遠心によりAAVベクターを濃縮精製するが、その超遠心では、CsCl濃度勾配を使用しない方法を提供する。遠心操作を多用したAAVベクター精製は、遠心機があれば簡単に行える。

    • Transfection of HEK293, and post culture
      • 20 Flasks of T-150, Three (3) Plasmid PEI
      • (説明: フラスコでHEK293細胞を培養した後,ポリエイレンイミンでプラスミドを細胞内にトランスフェクションスル)
    • Centrifugation
      • 3,000 xg 10 min
      • (説明: 遠心で細胞画分を回収する)
    • (A) Lysis by Freeze-thaw, and (B) Nuclease, (C) sodium deoxycholate
      • (A) 50mM Tris-HCl, 0.15M NaCl, 2mM MgCl2, pH8, Dry ice – ethanol ←→ 37℃ 交互に細胞破砕
      • (B) Benzonase: 50 u/mL, RNase: 10U/mL, 37℃、30min
      • (C) 0.5% sodium deoxycholate, 37℃, 30min
      • (説明: 回収した細胞を凍結融解して破砕,Nucleaseで核酸を切断,Sodium deoxycholate処理する)
    • Centrifugation
      • 2,500 g x 10min/sup
      • Pooling with cell culture supernatant
      • (説明: 遠心して上清を回収する)
    • PEG 8000, NaCl Treatment / ppt
      • 8% PEG 8000, 0.5M NaCl by 40% PEG 8000, 2.5M NaCl
      • Incubation 1h , RT
      • (説明: 最終8% PEG, 0.5M NaClに調整し1時間室温で静置して沈殿化)
    • Centrifugation 2,000 g x 30min
      • Re-suspend with HEPES buffer
      • (説明: 遠心して沈殿を回収しHEPES バッファで沈殿を懸濁および融解する)
    • Chloroform Extraction / cfg-sup / Evaporate
      • Add equal volume of chroroform
      • Vortex going , 2min, RT
      • cfg (370 g x 5min)/supernatnat
      • Evaporate 30min, RT
      • (説明: HEPESバッファで懸濁・融解した液に対して,クロロホルム添加により,(おそらく)水相にAAVを抽出する)
    • PEG 8000, AmSO4 Treatment / AAV in sup
      • 10% PEG 8000, 13.2% AmSO4 pH8.0 adjusted by stocked solution
      • Incubation at RT
      • (Impurity salt out ppt), HEPES buffer pH has to be kept at pH8.0, AAV stable is Alkaline that acid
      • (説明: PEG8000と硫酸アンモニウムで不純物を沈殿化し,AAVを上清に回収する)
    • Dialysis using 50kDa
      • diluent: PBS or MEMEM media with 0.001% puluronic F68 for preventing the aggregation
      • (説明: 分画分子量50kDaのUF膜を用いてPBSまたはMEMEMにバッファ置換する.プルロニックF68は凝集抑制に効果がある)

    清澄ろ過

    Pall製品による清朝濾過。

    • PHD11 : cellulose based capsule
    • PDP8 + Bio 10 : Bio 10のみではろ過量が少ないが、PDP8の組み合わせで良好にろ過が可能

    AEX Membrane

    Pall 製品とこれらを用いたPallとのCo-Developingがサービスとして可能です。

    • Mustang Q membrane chromatography for enriched full capsids
      • Labの超遠心の代替
      • Mustang Membrane: 8000A pores vs polymer matrix:Packed 40-90μm beads 300-1000A pores
    • AAV5 gradient Elution by Mustang Q XT Membrane in Acrodisc Capsule
      • Step elution : Empty in 1st elution, full in 2nd elution
      • Peak 1 : 10 mS/cm, 13E11
      • Peak 2 : 14 mS/cm, 7E11
    • TFF
      • 100kDa for AAV, 300kDa for LV
      • TMP : 0.5 ~ 0.8 bar
      • Shear rate : <4,000 second-1 for hollow fibers; <4 L/min/m2 for cassettes.
      • J=K*ln(Cbulk/Cconc)

    文献

    Inexpensive, serotype-independent protocol for native and bioengineered recombinant adeno-associated virus purification

    http://www.jbmethods.org/jbm/article/download/102/90

    編集履歴

    2019/10/04 Mr.Harikiri
    2020/10/01 文言整備
    2020/11/05 追記 (Pall膜製品による精製 Pall Webinarより)
    2023/10/24 追記 (説明を追加)
  • [rAAV] 遺伝子治療薬としての遺伝子組換えAAV(rAAV)の沈殿法による精製のいろいろ – ID2452 [2019/09/27]

    [rAAV] 遺伝子治療薬としての遺伝子組換えAAV(rAAV)の沈殿法による精製のいろいろ – ID2452 [2019/09/27]

    はじめに

    遺伝子治療薬として、ヒトの細胞に感染させ目的の遺伝子をその細胞に導入するするために、目的遺伝子を封入したAAVベクターという器をきれいに精製する方法の紹介。

    PEG沈殿

    超遠心機を使用しないPEG 8000を使用した沈殿化精製条件でベクターとしてAAV2, AAV8を精製する。AAVベクターの精製をプラットフォーム化する 1)

    DNAはPEGの分子量が大きい程、沈殿化しやすい(PEG 6000, 30%)。また、沈殿化は、NaClやMgCl2で増強されるが、MgCl2の場合は、数mM濃度で沈殿化はトップとなりベルシェイプを呈する 2)

    クロロホルム沈殿法

    Chroloform沈殿法では、upper layerとbottom layerにそれぞれ水層とChroloform層の2層に遠心分離できる。Chroloform層には、lipidsが含まれ、それ以外の組成物は水層に含まれる 4)

    クロロホルム-メタノール沈殿法

    Chroloform-Methanol precipitationの方法論の基礎として、血漿1mLにChroloform-Methanol (2:1)を10mL電荷してタンパク質以外のトリグリセライドとコレステロールを水層に分離する方法 5).AAVベクターを上清に回収するには、おそらく66% Chroloformよりも低い濃度でないとlipidと共にChroloform層または沈殿として除去されると考えられる。当該1)文献では等量のChroloformを添加しているので50%濃度であるので、妥当な濃度であると考えられ。

    塩は、ダンパク質の凝集剤として使用される。ダンパク質間の静電相互作用を弱められ沈殿する

    有機溶剤は、溶液自体の導電率を低下させ、アミノ酸残機と相互作用 5)変性の状態へと状態が進む。軽い変性状態である場合、蛋白質の通常のFolding状態では内側に隠れている疎水性が表面に出でくるものとかんがえられ、それが相互に結合しやすいため、蛋白同士が凝集するものと考えられる。強い変性状態では、完全に変性すれば、ダンパク質は不溶性となる。高分子であるダンパク質の場合、排除体積効果による凝集と、アミノ酸残機との相互作用による溶解の両方の効果を考慮しなければならない 5)

    文献

    1)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374034/

    2)Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single molecule measurements†: https://www.researchgate.net/profile/Puneeth_Kumar_R/post/Why_and_how_does_PEG_precipitate_DNA_Why_is_it_better_than_isopropanol_to_reduce_the_polysaccharide_contaminants/attachment/59d62c5879197b807798ab8d/AS%3A346620320337920%401459652132379/download/Polyethylene+glycol+and+divalent+salt-induced.pdf

    3)DNA Condensation by Multivalent Cations: https://www.researchgate.net/profile/Puneeth_Kumar_R/post/Why_and_how_does_PEG_precipitate_DNA_Why_is_it_better_than_isopropanol_to_reduce_the_polysaccharide_contaminants/attachment/59d62c5879197b807798ab8e/AS%3A346620324532225%401459652133439/download/DNA+Condensation+by+Multivalent+Cations.pdf

    4)Protein precipitate forms at the interphase of a top aqueous layer(MeOH+H2O) containing salts, detergents, reducing agents, nucleic acids etc., and a bottom layer of chloroform containing lipids.

    5) Comparison of six methods for the extraction of lipids from serum in terms of effectiveness and protein preservation: https://pdfs.semanticscholar.org/44ca/c0638d3eb4d2648e2383c7f29130962931c2.pdf

    6) ダンパク質の凝集剤としての塩・有機溶剤・高分子

    編集履歴

    2019/09/27, Mr.HARIKIR

  • [rAAV] rAAVの従来からの精製方法 (PEG沈殿、超遠心), 2010 – ID2417 [2019/09/26]

    [rAAV] rAAVの従来からの精製方法 (PEG沈殿、超遠心), 2010 – ID2417 [2019/09/26]

    rAAV vectorの精製方法

    沈澱化と遠心分離、および超遠心機を使用する従来からのAAV精製方法を以下に2種類を示しました。工業化するには、超遠心機の使用は不適切です。何か代替できる方法に切り替える検討が工業化には必要です。具体的には、クロマトグラフィへの切り替えです。適切な吸着担体と詳細な条件検討により工業化を進める必要があります。

    Standard purificationOptimized purification
    TransfectionTransfection
    ⬇︎⬇︎

    Centrifugation (Cell Pellet by 2,500g x 10min)

    Same as left
    ⬇︎⬇︎
    Freeze-thaw Lysis (50mM Tris-HCl, 150mM NaCl, 2mM MgCl2, pH8.0)Same as left
    ⬇︎⬇︎
    cfg (2,500g x 10min)Same sa left
    ⬇︎⬇︎
    cfg-supcfg-sup + culture supernatant
    ⬇︎⬇︎
    ⬇︎8% PEG, 0,5M NaCl by adding 40% PEG 8000, 2.5M NaCl, 2h on ice    
    ⬇︎⬇︎
    ⬇︎cfg (2,500g x 30min)
    ⬇︎⬇︎
    ⬇︎cfg-ppt
    ⬇︎⬇︎
    ⬇︎

    Resuspend

    (50mM Tris-HCl, 150mM NaCl, 2mM MgCl2, pH8.0)

    ⬇︎⬇︎
    DNase Treatment (100U/mL, 1h, 37’c)Same as left
    ⬇︎⬇︎
    Ultracentrifugation (104,000g x 24h, 20’c)Same as left
    ⬇︎⬇︎
    Dialysis vs PBS (overnight)Same as left
    ⬇︎⬇︎
    Ultracentrifugation (182,000g x 24h, 20’c)Same as left

    まとめ

    上記表には,文献の精製手順の比較により,その詳細を示した.その内のOptimized Methodについて概略フローを,以下に示した.従来法と異なる点は,PEG8000による沈殿化である.

    Culture -> Cell -> Lysate -> Clarification -> Polyethylene Glycol (PEG) 8000 -> Ultracentrifugation -> Dialysis ->Ultracentrifugation

    注) UltracentrifugationをGradientと業界では読んでいるようで,おそよく塩化セシウムの濃度勾配を使用することが,それをGradientと称しているものと推察される.

    High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency

    編集履歴

    2019/09/26, Mr.HARIKIRI
    2023/10/25, 修正(まとめ)

  • [Bio-rAAV] アデノ随伴ウイルス(AAV)ベクターを使用する意義(特徴)と製造概要 – ID1862 [2019/09/06]

    [Bio-rAAV] アデノ随伴ウイルス(AAV)ベクターを使用する意義(特徴)と製造概要 – ID1862 [2019/09/06]

    ID1862

    rAAVベクターの特徴

    遺伝子がランダムに導入される理由を掘り下げて調査した。

    1. 導入目標: レトロウイルスでは分裂細胞にしか遺伝子導入できないが,AAVでは,分裂,非分裂を問わず導入可能で長期発現が可能
    2. 免疫原性: センダイウイルス,ヘルペスウイルス及びアデノウイルスが免疫原性が高いのに対して,AAVは低い
    3. 遺伝子毒性: 正常遺伝子導入の際、ベクター配列が染色体に入ること、正常遺伝子が組み込まれる位置の制御できないため、癌遺伝子近傍に入るとがん化の可能性がある(文献1, p.20)、また、文献2には、宿主の染色体にランダムに遺伝子が導入されるため,レトロウイルス,レンチウイルスと同様に遺伝子毒性がある (現状での技術面の成熟が期待される)
    4. 1997年現在では、野生型AAVが持つ染色体第19染色体の長腕(q13.4-ter)への特異的な遺伝子導入は、組換え技術で作ったAAVベクターで特異的な部位への遺伝子導入は達成できない(文献4)。
    5. 特定部への遺伝子導入制御方法に関する特許は、2008に公開されている(文献5)ので、この時点で、染色体の特定部位への遺伝子導入は難しい技術であったことが伺える、1997年では、その技術はなかった可能性がある。
    6. 上記の最近の文献でもランダム導入などの記載があり、野生型AAVの特異的に特定の部位に遺伝子を導入できるまでには至っていないものと考えられる(今後も調査予定)。
    7.  臨床計画書を見ると、rep遺伝子は使われないようだ。すなわちランダムに遺伝子が組み込まれる。
    8. 細胞毒性: 細胞毒性が低いとされるレトロウイルス,レンチウイルスなどと比較しても,細胞毒性はほとんどない
    9. 大量調製が容易
    10. 治験応用実績: 血友病,パーキンソン病,Leber先天性黒内障
    11. 投与経路: 全身投与により大量投与が可能

    rAAVのメリット

    1. 拡散防止措置P1施設で取り扱う
    2. 増殖/非増殖のいずれの細胞にも遺伝子導入が可能
    3. 非増殖性の細胞での長期発言
    4. 免疫原性が低い

    rAAVベクター製造

    • プラスミドベクター製造
      • AAV ssDNA(pAAV-GOIvector)
        • pAAV CMV Vector
        • pRC Vector
        • pHelper Vector
    • ウイルス作成細胞(HEK293/Tなど) Cell Bank製造
    • プロセス開発
      • 培養
        • Transfection条件(細胞濃度とプラスミドベクターの比率)
      • 精製
        • 抽出法
        • カラム精製
        • UF/DF
    • non-GMP ウイルスベクター製造
    • 非臨床試験
      • in vivo実験(1012 vg/mL)
    • カルタヘナ申請
    • GMP ウイルスベクター製造

    参考

    文献

    1. TAKARA: catalog.takara-bio.co.jp/research.htm
    2. 経済産業省: https://www.kantei.go.jp/jp/singi/kenkouiryou/genome/advisory_board/dai5/siryou4-2-8.pdf
    3. 平成27年7月24日、国立医薬品食品衛生研究所: http://www.nihs.go.jp/oshirasejoho/symposium/documents/H27_suraido_3.pdf
    4. https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-08672600/(1997)
    5. 公開特許公報(A)_アデノ随伴ウイルスのITRをもつDNAのヒト第19番染色体への組込み部位の制御方法(2008): https://biosciencedbc.jp/dbsearch/Patent/page/ipdl2_JPP_an_2006263018.html
    6. 遺伝子治療臨床計画書(2017) – rep遺伝子を欠いているためAAVS1へは導入されずランダムに組み込まれる(p.14): https://www.mhlw.go.jp/file/05-Shingikai-10601000-Daijinkanboukouseikagakuka-Kouseikagakuka/0000186212.pdf

    編集履歴

    2019/09/06 はりきり(Mr)
    2019/09/14 追記 (文献3, 4追加)
    2020/04/28 文言整備

  • [用語] COGs; Cost of Goods sold; 売上原価 – ID18730

    [用語] COGs; Cost of Goods sold; 売上原価 – ID18730

    COGs

    COGs; Cost of Goods sold; 売上原価

    編集履歴

    2020/07/11 Mr.HARIKIRI