タグ: Vector

  • [Bio-Edu] 遺伝子治療医薬品の開発におけるウイルス・ベクターの製造方法 – VigeneのHandbookをもとに解説 [2020/12/22]

    [Bio-Edu] 遺伝子治療医薬品の開発におけるウイルス・ベクターの製造方法 – VigeneのHandbookをもとに解説 [2020/12/22]

    はじめに

    Vigene Biosciences社が提供しているHandbookから、遺伝子治療医薬品の開発におけるウイルス・ベクター (AAV, Adenovirus, and Lentivirus) の製造方法について概説する。

    PD: Process Development

    cGMP Cell & Gene Therapy (16 page) – Updated Edition 2020, Vigene –

    https://www.vigenebio.com/wp/wp-content/uploads/2020/11/GMP-Handbook-2020.pdf

    Vigene – the cGMP Viral Vector Experts

    Vigene manufacturing technologies and platforms

    Vigene manufacturing services

    候補(導入遺伝子)がない

    in vivoにおける候補の特性や試験が未実施の場合は、リサーチ・グレードのマテリアルを使用してください。

    候補がある

    候補の特性や試験について、必要なスクリーニングとアッセイが実施されている場合、引き続き、前臨床用としてリサーチ・グレード・マテリアルを使用してください。

    前臨床が完了していない

    前臨床試験が完了していない場合、安全性の確認としてリサーチ・グレードのマテリアルを使用してください。

    前臨床か完了している

    前臨床試験が完了しており、患者投与量と必要となるGMPマテリアルの試算が完了している場合、市臨床試験とコマーシャルへのマテリアルとして、GMPマテリアルを使用してください。

    開発プロセス

    1. Discovery
      • 候補の導入遺伝子の特性に関する基礎研究
    2. Preclinical
      • 動物試験による、安全性(safety)と認容性(tolerability)の確認
    3. Clinical
      • Phase I, II and IIIなどの臨床試験
    4. Commercial
      • 製品の承認と出荷可能
  • [rAAV-Edu] rAAVベクターのFull/Empty ratioの改善のヒント [2021/10/15]

    [rAAV-Edu] rAAVベクターのFull/Empty ratioの改善のヒント [2021/10/15]

    はじめに

    AAVを活用した遺伝治療薬では,AAVの殻の中に封入させる遺伝子をいかに効率よくできるかが重要な品質項目となる.

    Full & Empty ratio

    rAAV Vectorの実製造にあたって、ウイルス粒子に封入させたい目的の遺伝子をパッケージングしている完全体粒子(full)と遺伝子をパッケージングしていない、又は部分的である不完全体(empty)の比率を改善するすることは、生産性の効率化に避けては通れない課題である。

    今回参照する文献によると、図1に示す実験条件で、Full/Empty比率を培養工程において確認した結果がある。

    表1のようにTransfectionから時間が経過するほどFull particlesの絶対数はMediaとPelletを合計しても低下した。

    • MediaにおけるFull particles数は、Transfectionから日数が経過するほど増加した(1)
    • PelletにおけるFull particles数は、Transfectionから日数が経過するほど減少した(2)
    • MediaとPelletを混合してrAAVベクターを製造する場合を想定すると、Empty particles数は、日数が経過するほど増加、すなわち、Full particles数は、減少した(3)
    https://www.researchgate.net/profile/Matthew_Benskey/publication/293825466_Continuous_Collection_of_Adeno-Associated_Virus_from_Producer_Cell_Medium_Significantly_Increases_Total_Viral_Yield/links/56e0583208ae9b93f79c2d8e/Continuous-Collection-of-Adeno-Associated-Virus-from-Producer-Cell-Medium-Significantly-Increases-Total-Viral-Yield.pdf?origin=publication_detail
    図1. TransfectionからHarvest期間

    Sample(1) Full in Media(2) Full in PelletEmpty in MediaEmpty in Pellet% Empty in Pellet% Empty in Media(3) %Empty in Pellet & Media
    3 day1384151818417210%12.1%11%
    5 day1466133728117219.1%16%13%
    7 day1512118122840625.3%13.2%19%

    Continuous Collection of Adeno-Associated Virus from Producer CellMedium Significantly Increases Total Viral YieldMatthew J. Benskey,1Ivette M. Sandoval,1and Fredric P. Manfredsson

    https://www.researchgate.net/publication/293825466_Continuous_Collection_of_Adeno-Associated_Virus_from_Producer_Cell_Medium_Significantly_Increases_Total_Viral_Yield

    考察

    MediaとPelletでのFull Particle数の合計が、Transfection後の3日後が最も高かったが、その後、7日後まで減少が続いた。この減少する原因について以下のように考察する。

    • Pellet内のFull Particleの減少傾向は、Full Particleの合成効率が低下している
    • 又は、Pellet内でのFull Particleの安定性が不良である
    • Full ParticleのTransfectionからHarvest工程までの期間での安定性が不良である

    編集履歴

    2019/09/18 はりきり(Mr)
    2020/06/12 整備(Gutenberg blockに変換)
    2021/10/15,追記(考察)
    2023/10/05,追記(はじめに)
  • [Bio-Process] 配列からベクターDNAを作るまでの工程 [2021/06/14]

    [Bio-Process] 配列からベクターDNAを作るまでの工程 [2021/06/14]

    遺伝子配列からベクターDNAを作る

    • plasmid vector (ベクター)の選択と準備
    • 遺伝子配列の準備
      • 配列のチェック
      • コドン最適化
      • 遺伝子合成
    • 合成遺伝子をベクターにカセットする
    • 大腸菌にトランスフェクションして増やす
      • ampicillin agar plate
      • single colony
      • Flask culture with ampicillin
    • Cell Bank作成
      • phenotype
      • sequence
      • plasmid number
    • Plasmid精製
      • midi-prepped
      • Plasmid circle to linear by (制限酵素)
      • 精製 phenol chloroform
      • 配列確認

    編集履歴

    2021/06/13, Mr. Harikiri

  • [Bio-Vector] 人工染色体 – 目的細胞に導入して安定発現細胞株を作る – AAVベクターの生産株として適用できるのか? – chromocenter/TaKaRa [2021/01/15]

    [Bio-Vector] 人工染色体 – 目的細胞に導入して安定発現細胞株を作る – AAVベクターの生産株として適用できるのか? – chromocenter/TaKaRa [2021/01/15]

    はじめに

    遺伝子組換えで目的物を作る方法には、一過性発現と安定発現細胞株を使う方法があります。目的物が1種類の場合、例えは抗体医薬の場合、殆どは一過性発現ではなく安定発現細胞株を樹立し製造に使用されます。

    遺伝子治療で使用されるAAVベクターの作り方の主流は、動物細胞や昆虫細胞に対して、構成要素として必要な遺伝子をコードする3つのプラスミドDNAをトランスフェクションする一過性発現法であるThree Plasmid Transrectionです。

    ウイルスベクターの新たな作り方

    ここ数年、遺伝子治療医薬品のコマーシャル品が承認されて、その製造方法に関する技術についても注目されてきています。Three Plasmid Transfectionと同様の手法により、Produce Cell LineやPackaged Cell Line (PCL)と言われる、3つの Plasmideを目的細胞に導入することで安定発現細胞株を作成してくれるCDMO (Vigene社など)もあります。

    ここで紹介する人工染色体を用いた安定発現細胞株の構築は、PLCと比較して優位性があるのでしょうか? 今後、結論を出したいとおもていますが、今回は、人工染色体を導入した安定発現細胞株の作り方について、TaKaRaとchromocenterのホームページから情報をまとめました。

    • Three (3) plasmid method
      • 一過性発現
      • 製造の段階で用意した3つのプラスミド(一定の比率)を使い、薬剤によるトランスフェクションして、一過性で生産させる
    • PLCによる生産株樹立
      • 安定生産細胞株
      • 3つのプラスミドを一つずつトランスフェクションとスクリーニングして構築
      • 製造時に、細胞株を拡大培養
    • 人工染色体導入による生産株樹立
      • 安定生産細胞株
      • 必要な構成遺伝子をコードした人工染色体を細胞にトランスフェクションして構築
      • 製造時に、細胞株を拡大培養

    人工染色体の特徴

    TaKaRaのサイトを参照しました。

    • 導入できる目的遺伝子の大きさは数Mb(大きいサイズ可能)
    • 染色体とし振る舞う
      • 細胞分裂により受け継がれる
      • 一定のコピー数(コントロール可能)
      • 宿主遺伝子の破壊の可能性が低い
    • 導入された遺伝子の発現について、サイレンシング、過剰発現されることは少ない

    人工染色体の構造

    マウスの染色体を使用したものをMouse Atrtificial Chromosome (MAC)、ヒトの場合をHuman Artificial Chromosome (HAC)と言います。

    • Wild type 染色体の構造
      • テロメア
      • セントロメア
      • 遺伝子領域 (内在遺伝子)
      • テロメア
    • 人工染色体の構造
      • (ヒト21番染色体(35Mb)の場合)
      • (内在遺伝子の削除)
      • テロメア
      • セントロメア
      • (loxPサイトの導入)
      • 人工テロメア
      • (このHACでは、5Mb)

    遺伝子搭載サイズ

    • Plasmid
      • ~ 20 kb
    • Virus
      • ~ 150 kb
    • BAC/PAC
      • ~ 300 kb
    • YAC
      • ~ 1Mb
    • HAC, Chromosome
      • ~ 100 Mb

    従来ベタクーとの比較

    • プラスミドベクター
      • 2本鎖DNA
      • 宿主染色体に取り込まれる *1
      • 遺伝子導入サイズは、~ 300 kb
      • 発現量は、挿入部位やコピー数に依存(コントロールが難しい)
      • 発現の安定性は、低く消失の可能性がある
    • アデノウイルスベクター
      • 2本鎖DNA
      • 宿主核内で独立存在、一部は宿主染色体に組み込まれる
      • 遺伝子導入サイズは、 理論的には~ 36 kb、現状8 kb
      • 発現量は、感染効率に依存(ある程度のコントロールは可能)
      • 一過性発現で発現は不安定性
    • センダイウイルスベクター
      • 1本鎖RNA
      • 宿主細胞室内で独立存在
      • 遺伝子導入サイズは、 ~ 5 kb (数遺伝子)
      • 発現量は、感染効率に依存(ある程度のコントロールは可能)
      • 一過性発現で発現は不安定性
    • 人工染色体ベクター
      • 2本鎖DNA
      • 宿主核内で独立存在
      • 遺伝子導入サイズは、 理論的には制限はない。現状~ 2.4 Mb
      • プロモーターで強弱は決まり、発現量は一定
      • 発現は安定性。転写レベルとして50世代以上
    *1 : 宿主染色体に組み込まれる原理として1の考察は、そもそも裸のDNAは染色体構造を取っていないことを理解しておく。輪っか状のpDNAであれば、核内に独立存在可能であると考えられるが、pDNA調整過程で1本鎖DNAが微量に混入する。これが、宿主染色体に組み込まれると理解される(Mr.Harikiri)

    chromocenter社の方法

    先ずは、目的遺伝子を持つ人工染色体を作成します。目的の染色体二は、薬剤耐性遺伝子タグが付けられます。

    ドナー細胞の作成

    1. 挿入型遺伝子搭載法

    以下の構成要素でMAC/HACを作成し、これらを内包する「ドナー細胞」を作成します。

    1. MAC作成の場合
      • 人工染色体ベクター
        • バクテリア人工染色体 (BAC, loxPやHPRT領域が必要)、または、
        • 酵母人工染色体 (YAC)
    2. MAC保持 CHO hprt -/-準備
    3. 目的遺伝子搭載ベクターの添加(+Cre)
    4. ドナー細胞の取得 (目的遺伝子が搭載されたMAC(hprt再構築)を有する)
    5. MMCT法により安定発現細胞株の取得
      • 以下に説明したMMCT法を実施
      • 目的遺伝子搭載のMACを保有する目的細胞

    2. 転座型遺伝子搭載法

    ヒト染色体導入マウスA9細胞ライブラリー等から、目的遺伝子領域を含む細胞を選択

    1. ヒト染色体導入マウスA9細胞を用意
      • 耐薬剤遺伝子を含む
    2. DT40細胞内
      • 相同組換え
      • 不要な染色体領域の切断
      • BS/loxP (部位特異的組換え配列) 挿入
      • 人工テロメア挿入
    3. MAC保持のCHO細胞を用意(ドナー細胞)
      • MMCT
      • Creによる相互転座
      • HAT選択
      • 転座型MACを保持する細胞の取得
    4. MMCT法により安定発現細胞株の取得

    MMCT法(微小核細胞融合法)

    1. ドナー細胞を準備
    2. コルセミド処理(48~72hrs)
      • 一つの核膜に包まれていた染色体が、個別に包まれ微小核が形成される
    3. サイトカラシン処理
      • 細胞骨格を壊し、微小核を遠心分離にて取得する
    4. ろ過精製
      • 8μm → 8μm → 3μm
    5. レシピエント細胞に微小核を混合
      • フィトヘマグルチニン; PHA (架橋剤)
      • ポリエチレングリコール; PEG (融合剤)
    6. スクリーニング
      • 薬剤耐性により選別培養する

    人工染色体ベクターによる安定発現細胞株作製 – TaKaRa, chromocenter社の紹介 –

    https://catalog.takara-bio.co.jp/jutaku/basic_info.php?unitid=U100009029

    chromocenter – ホームページ

    http://chromocenter.com

    編集履歴

    2020/01/15 Mr.Harikiri
  • [Gene Therapy] AAV Vectorの特徴、および他のベクターとの比較 / その他、参考文献 [2021/01/04]

    [Gene Therapy] AAV Vectorの特徴、および他のベクターとの比較 / その他、参考文献 [2021/01/04]

    はじめに

    核酸を医薬品にする場合,その核酸の配列が患者の染色体に組み込まれる危険性が以前から懸念されています.更に,染色体に外来のDNA断片が挿入されることで,その細胞の癌化が生じる懸念があるわけです.

    それでも,どうしてもその核酸関連の医薬品を使用しなければならいない場合もあります.これは,利益と効果の問題です.医薬品とはその利益と効果の天秤に乗っかっているのです.

    2023年現在までに,2019から起きたCOVID-19の予防薬として核酸ワクチンが全世界的に使用されました.その結果,mRNA医薬品がCOVID-19の予防薬として成功を収めたことで,さらなる次のワクチンの開発に拍車がかかりました.例えば,インフルエンザやその他感染症のワクチンです.

    ヒトの染色体に組み込まれるリスクが高いのは,核酸医薬のなかでもDNAの場合です.染色体はDNAでできているためです.

    modernやpfizerが開発したCOVID-19ワクチンはmRNAですが,mRNAは体内での安定性が高くないため比較的すみやかに分解されます.そのため,mRNA自体による副作用は低いと考えられています.

    それでも,mRNAはDNAに変換される反応経路が存在するためmRNA由来のDNA断片が細胞の染色体に挿入されてしまう可能性が考えられます.具体的には,RNAからDNAに変換する逆転写酵素の存在です.ある種の癌細胞では,この逆転写酵素を多く作るものもあるようです.そのような場合,RNAがDNAに変換されやすくなり,染色体へのDNA断片の挿入の可能性が無いとは言えないのです.

    核酸関連の医薬品では,癌化のリスクが付きまといます.

    ウイルスベクター

    遺伝子治療用のウイルスべクター(非増殖性)は、ウイルスが細胞に感染する機構を利用して、組み換えた遺伝子を細胞内に導入できる

    • レトロウイルス
      • 染色体への組み込み : 有り(挿入変異)
      • 構造
        • エンベロープ
          • カプシド
            • ウイルスゲノム (1本鎖RNA、+鎖逆転写酵素)
              • 野生型 : LTR – gag – pol – env – LRT
              • 非増殖性 : LTR – promoter – 目的遺伝子 – LRT
    • アデノウイルス
      • 染色体への組み込み : 低頻度
      • その他の仲間
        • ヘルペスウイルス
        • ポックスウイルス
      • 構造
        • 20面体
        • カプシド
          • ウイルスゲノム (2本鎖DNA 36 kb)
            • 野生型 : ITR – E1 – E3 – ITR
            • 非増殖性 : ITR – プロモーター – 目的遺伝子 – ΔE1 – ΔE3 – ITR
    • アデノ随伴ウイルス (AAV)
      • 染色体への組み込み : 低頻度
      • 構造
        • カプシド
          • ウイルスゲノム (1本鎖DNA 4.7kb)
            • 野生型 : ITR – Rep – Cap – ITR
            • AAVベクター : ITR – プロモーター – 目的遺伝子 -ITR
    • レンチウイルス
      • レトロウイルス科に属する
      • 粒子サイズ : 100 nm
      • 染色体への組み込み : 有り(挿入変異の可能性、野生型HIVの病原性)
      • 構造
        • エンベロープ
          • カプシド
            • ウイルスゲノム (1本鎖RNA 8kb, 2本鎖DNAに変換する逆転写酵素を持つ)
    • センダイウイルス
      • 粒子サイズ : 150 ~ 250 nm
      • 1本鎖・マイナスRNA (RNA型RNAベクター)
      • 染色体への組み込み : 無し
      • 構造
        • エンベロープ
          • カプシド
            • ウイルスゲノム (15 kb)
              • 野生型 : N – P/V/C – M – F – HN – L
              • F遺伝子欠損型 : 目的遺伝子 – N – P/V/C – M – HN – L

    注) mRNAは、プラス鎖RNA。プラス鎖RNAウイルスには、ピコルナウイルス、フラビウイルス、トガウイルスがある。マイナス鎖RNAウイルスには、インフルエンザウイルス、アレナウイルス、ブンヤウイルス、ラブドウイルス、パラミクソウイルス、フィロウイルスがある。2重鎖RNAウイルスには、レオウイルス、ロタウイルスが代表的。

    非ウイルス・ベクター

    • プラスミド
      • DNAをリポソームやポリマーで製剤にしたもの
      • 染色体への組み込み : 低頻度
      • 輪っか状
        • 複製機転 → プロモーター → 目的遺伝子 → poly A付加シグナル → 洗濯マーカー遺伝子 →
    • バクテリアベクター
      • 遺伝子改変した細菌

    ベクターの特徴まとめ

    VectorvivoWT 病原性Integration to genomemutation riskduration重大事故
    AAV Vectorinnonenonenonelong腫瘍発生の報告はない
    Adenovirus Vectorinanynoneanyshort免疫原性高い。1999年大量投与による死亡事故(米)comercial
    Herpes Virus VectorinanyanyanyshortZolgensma(AveXis), Luxturna,(Spark), Glybera(uniGure)
    Plasmid Vectorinn/anonenoneshortCoteragen
    Retrovirus Vectorin/exanyanymanylong白血病
    Lentivirus VectorexanyanymanylongKimria

    参考文献

    AAVの発見

    Adenovirus-Associated Defective Virus Particles Robert W. Atchison1,  Bruce C. Casto1,  William McD. Hammon1  See all authors and affiliations Science   13 Aug 1965: Vol. 149, Issue 3685, pp. 754-755 DOI: 10.1126/science.149.3685.754

    https://science.sciencemag.org/content/149/3685/754

    AAV2全塩基配列

    Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol. 1983 Feb; 45(2): 555–564. PMCID: PMC256449PMID: 6300419, A SrivastavaE W Lusby, and  K I BernsCopyright and License informationDisclaimer

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC256449/

    AAV3全塩基配列

    Nucleotide Sequencing and Generation of an Infectious Clone of Adeno-Associated Virus 3, Virology, Volume 221, Issue 1, 1 July 1996, Pages 208-217

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC256449/

    血清型

    Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues, J Virol. 2004 Jun; 78(12): 6381–6388. doi: 10.1128/JVI.78.12.6381-6388.2004PMCID: PMC416542PMID: 15163731

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC416542/

    Universal Method for the Purification of Recombinant AAV Vectors of Differing Serotypes _ Elsevier Enhanced Reader

    Achieving High-Yield Production of Functional AAV5 Gene Delivery Vectors via Fedbatch in an Insect Cell-One Baculovirus System. Molecular Therapy: Methods & Clinical Development Vol. 13 June 2019 Crown Copyright a 2019

    https://www.cell.com/molecular-therapy-family/methods/pdf/S2329-0501(19)30020-8.pdf

    遺伝子治療用製品の開発における国内と海外の規制動向 —5年間の進展—、2016.6.16, 国立薬品食品衛生研究所、遺伝子医薬部、内田恵理子

    https://www.nihs.go.jp/mtgt/section-1/related%20materials/201606.pdf

    「L-dopaをドパミンに変換する酵素AADCをコードする遺伝子導入による遺伝子治療」に関する文書。2006年

    ① 遺伝子治療の臨床試験において、3つのプラスミドの製造を受託している会社(CMO)、Avigen社およびGenzyme社について記載がある。いずれも厳密に品質管理していると記載がある。
    ② Avigen社は、製造に使用するHEK293細胞のMaster Cell Bankを作成し品質管理は、専門の検査会社のBioReliance Corp. Rockville. MD, US)で実施されて安全性が確認されている。
    ③ 細胞の遺伝子型、表現型による安全性の確認では、細胞内酵素(lactate dehydrogenase, glucose-6-phosphate dehydrogenase, dehydrogenase, nucleoside phosphorylase)の電気泳動法による発言パターンの確認して、他種細胞の混入を否定している。安定している4から20世代数のMCBでのVector製造を実施している
    ④ アデノウイルスベクター全身投与された患者が死亡した例(1999, US)、レトロウイルスベクターを投与された免疫不全症患者が、白血病を発症した例の記載(2002-2005, FR)

    https://www.nihs.go.jp/mtgt/section-1/related%20materials/201606.pdf

    遺伝子治療用ベクターの定義と適用範囲, 2013 – 国立医薬品食品衛生研究所 内田 恵理子 –

    https://www.mhlw.go.jp/file/05-Shingikai-10601000-Daijinkanboukouseikagakuka-Kouseikagakuka/0000020310.pdf

    2. センダイウイルスベクター : ベクター開発と医療・バイオ分野への応用 – ウイルス 第57巻 第1号, pp.29-36, 2007 –

    http://jsv.umin.jp/journal/v57-1pdf/virus57-1_029-036.pdf

    レンチウイルス基礎情報

    https://www.jnss.org/others/virus_vector/Lenti.htm

    RNAウイルス – wikipedia –

    https://ja.wikipedia.org/wiki/RNAウイルス

    第15章 ウイルスと病気

    各種ウイルスの構造を理解できる(Mr.Harikiri)

    http://jsv.umin.jp/microbiology/main_015.htm

    編集履歴

    2021/01/04 Mr. Harikiri
    2023/03/25 追記(はじめに)
  • 気になる企業 ベクタービルダー /デザイン/受託/開発/GMP製造 [2020/11/21]

    気になる企業 ベクタービルダー /デザイン/受託/開発/GMP製造 [2020/11/21]

    VectorBuilder

    ベクタービルダー・ジャパンのサイトより。

    • 2015 foundingの受託会社です
    • カスタムDNAベクター/ウイルスベクターをO2O (Online to Offline)プラットフォームにより、サービスを提供する
    • ベクターは単なる研究試薬であと認識すると、研究者は多大な調製時間を費やしている。VectorBuilderは、この問題を肩代わりしてくれます。
    • その実績は、世界中の大学・企業の何万人の研究者に数十万種のサーヒズを提供し、多くの論文に引用されています。

    サイトでできること

    • ベクターデザイン
      • マイベクターをデザインする
      • デザイン・リクエストを送る
      • 遺伝子からベクターを検索する
      • ベクターの情報を取り出す
      • サービスプロポーザルを取り出す
    • 受託サービスの確認
      • 分子生物学サービス
        • ベクター構築
        • BAC編集
        • ライブラリー構築
        • 安定発現株の樹立
        • プラスミドDNAの精製
      • ウイルスハッケージング
        • レンチウイルスベクター
        • AAV
        • Adenovirus
        • MMLVレトロウイルスパッケージング
        • MSCVレトロウイルスパッケージング
        • バキュロウイルスパッケージング
      • COVID-19コロナウイルス研究資料
    • GMP製造
      • プロセス開発
      • 品質/安定性検査開発
      • GMPプラスミドDNA製造
      • ウイルス製造
      • GMP準拠製造施設
        • 下記参照
    • 解析ツール
      • シークエンスアラインメント
      • シークエンスドットプロット
      • shRNAターゲットデザイン
      • コドン最適化
      • GC含有率計算
      • DNA二時構造
      • DNA逆向き相補鎖
      • 塩基配列の翻訳

    ベクターデザインできる種類

    • 哺乳類
      • 遺伝子発現ベクター
      • 誘導型遺伝子発現ベクター(Tet型)
      • コンディショナル遺伝子発現ベクター(Cre-Lox型)
      • CAR (Chimeric Antigen Receptor)発現ベクター
      • ノンコーディングRNA発現ベクター
      • shRNAノックダウンベクター
      • CRISPR遺伝子編集ベクター
      • CRISPR遺伝子転写調節ベクター
    • エンハンサー/プロモーターテスト用ベクター
    • ゼブラフィッシュ遺伝子発現ベタクー
    • ゼブラフィッシュCRISPRベクター
    • ショウジョウバエトランスジェニック作製用ベクター
    • ショウジョウバエCRISPR遺伝子編集用ベクター
    • 植物遺伝子発現ベクター
    • 植物CRISPR遺伝子発現用ベクター
    • リコンビナントタンパク質発現ベクター
    • In Vitro転写ベクター

    GMP施設

    • 18,000 sq ft
    • 2020年後半には、32,000 sq ftが稼働
      • 製造スイート数 : 11 (独立エアーフロー、Grade B/Cの環境下にGrade A BSCを配置、BSL-2認証
      • Fill/Finish スイート : 2,000 sq ft, Grade Cの環境下 Grage Aインシュレーター配置
      • QC Lab : 7,500 sq ft
      • 製造プロセスと分析法開発 Lab : 6,500 sq ft
      • US, EU, Ph ChおよびPIC/SのGMP規制とガイドラインに適合した設計であり、臨床試験/商用生産が可能

    VectorBuilder

    https://www.vectorbuilder.jp

    編集履歴

    2020/11/21, Mr.Harikiri
  • [用語] Lentivirus; レンチウイルス – ウイルスベクター [2020/11/14]

    [用語] Lentivirus; レンチウイルス – ウイルスベクター [2020/11/14]

    レンチウイルス

    • 80~100nmのエンベロープウイルス
    • RNAウイルス
    • レトロウイルス属
    • レトロウイルスに特徴であるgag、pol、env遺伝子を持つ。たたじ、2つの調節遺伝子のtatとrevを持つ
    • 逆転写酵素とインテグラーゼをカプシド内に輸送する事がで、それらタンパク質は、RNAと結合する
    • 逆転写酵素は、ウイルスRNAからDNAを複製する
    • インテグラーゼは、複製されたDNAにLTRを付加し、宿主DNAにインテグレーションさせる
    • Tatは、転写中にトランスアクチベーターとして機能し、開始と伸長を促進させる。
    • Rev応答エレメントは転写後に作用し、mRNAスプライシングと細胞質への輸送を調節する
    • 類人猿、サル、キツネザル、マレーヒヨケザル、ウサギ、フェレット、牛、山羊、馬、猫、羊に生息が確認されている
    • 5つの血清型は、霊長類、羊および山羊、馬、飼い猫、および牛に対応
    • エイズを引き起こすヒト免疫不全ウイルス(HIV)である
    • DNAへのcDNAは、非分裂細胞に効率的に感染する可能性があるため、遺伝子送達の最も効率的な方法の1つです。[2] レンチウイルスは内因性(ERV)になり、そのゲノムを宿主の生殖細胞系列ゲノムに統合することができるため、ウイルスは今後、宿主の子孫に受け継がれます。

    レンチウイルス – Wikipedia –

    https://translate.google.co.jp/translate?hl=ja&sl=en&u=https://en.wikipedia.org/wiki/Lentivirus&prev=search&pto=aue
    編集履歴
    2020/11/14 Mr.Harikir
  • [Vc] Pfizerの新型コロナウイルスに対するmRNAワクチン – Pfizer-BioNTech COVID-19 Vaccine の組成  [2021/06/10]

    [Vc] Pfizerの新型コロナウイルスに対するmRNAワクチン – Pfizer-BioNTech COVID-19 Vaccine の組成 [2021/06/10]

    BNT162とは

    ドイツのBiopharmaceutical New Technologies (BioNTech) 社とPfizerが共同開発するmRNAをベースとする新型コロナウイルス感染症に対するワクチンです。開発ワクチンは、SARS-CoV-2受容体結合ドメイン(receptor binding domain; RBD)をコードするヌクレオチド修飾メッセンジャーRNAをベースのワクチン(BNT162b2)

    • 2020/11/09, 4万3千人を対象に進められているP3臨床試験の途中集計として、その予防効果は90%以上あることを発表したsource
    • 2020/10/20, 日本人におけるBNT162b2の安全性、認容性および免疫原性を評価目的にPhase 1/2試験(160名、20~80歳日本人、BNT162b2とプラセボの比 3:1)を開始したと発表。BNT162b2は30μgを21日間隔で2回接種し、最終接種から12ヶ月後まで評価する計画。BNT162bは、最適化されたスパイクタンパク質の全長をコード強いる。BNT162b2は、ドイツ、米国、ブラジル、アルゼンチンを含む世界で最大120治験実施施設で、44,000人の参加で国際共同治験2/3相が評価中。この試験と、今回の日本出の試験のデータを用いて、日本での製造販売用視認を申請する予定です。承認が得られた場合、1億2000万回分のCOVID-19ワクチンを2021年上半期に日本に提供されるsource
    • 2020/07/31, 日本に対して来年6月までに6000万人分の供給を約束した
    • 2020/07/01, BioNTech社との共同研究であるSARS-COV-2に対するmRNAベースのワクチンの臨床試験(4候補、Phase I/II)の早期データを発表(45例の評価) source
      • 10μg/30μgの投与
      • 28日目, RBD結合IgG抗体濃度が上昇し、SARS-CoV-2に対する中和抗体価が確認された
      • 深刻な有害事象は無かったことから、今後のPhase IIb/3での有効性試験における主要候補と容量レベルの選択が可能となった

    BioNTech

    mRNAをベースに治療薬を開発するベンチャー source

    • mRNAベースの治療薬開発
    • コンピューターテクノロジー
    • 共同研究など他社との協業
      • Genmab
      • Sanofi
      • Bayer Animal Health
      • Genentech
      • Genevant
      • Fosun Pharma
      • Pfizer

    因みに、AstraZenecaが開発している新型コロナウイルス感染症ワクチンは、Adenovirsを使ったワンチンです。T細胞の免疫応答の強化が期待できるため、mRANワクチンよりもワクチン効果が高いことが期待されています。関連記事もご覧ください。

    ワクチンの臨床結果による有効性の比較

    世界の製薬企業であるPfizer, ModernaおよびAstrazenecaの臨床試験の成績の比較は、以下のをご参考にしてください。

    Pfizer-BioNTech COVID-19ワクチンの組成

    Pfizer-BioNTech COVID-19ワクチンは、SARS-CoV-2表面の改変したスパイク・糖タンパク質(spike (S) glycoprotein)をコードするメッセンジャー RNA (modRNA)を脂質膜で粒子状にした製剤です。提供形態は、凍結品で以下の組成になっています。

    • 凍結品 (ドライアイス; 75℃程度)で保管・輸送
    • 使用時には、1.8 mLの0.9% Sodium Chloride (diluent) で希釈
    • 複数回用
    • 0.3 mL投与
      • 30mg of modRNA
      • 0.43 mg (4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate)
      • 0.05 mg 2[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide
      • 0.09 mg 1,2-distearoyl-sn-glycero-3- phosphocholine
      • 0.2 mg cholesterol)
      • 0.01 mg potassium chloride
      • 0.01 mg monobasic potassium phosphate
      • 0.36 mg sodium chloride
      • 0.07 mg dibasic sodium phosphate dihydrate
      • 6 mg sucrose
      • (contributes an additional 2.16 mg sodium chloride per dose)
    • 3週間空けて2回の接種

    Pfizer-BioNTech COVID-19 Vaccine – Fact Sheets and Additional Information – FDA

    特に、日本語のファクトシートを見たい場合は、ワクチン接種を受ける人と介護従事者のためのファクトシートを参照

    https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine

    審査結果報告書

    製造方法

    審査結果からわかる製造方法は以下の通り。

    • plasmid DNA(pDNA)を大腸菌の培養により得る
    • 大腸菌を溶解してpDNAの抽出、精製される
    • pDNAを直鎖DNAにしてから、転写によるmRANを得る。必要な精製処理が行われる
    • 転写で使用されるUTPは、改変されたものである
    • mRNAはLNPで製剤化されている

    コロナウイルス修飾ウリジンRNAワクチン(SARS- CoV-2)

    (有効成分名:トジナメラン) , H2年 3月 12日

    https://www.pmda.go.jp/drugs/2021/P20210212001/672212000_30300AMX00231_A100_4.pdf

    編集履歴

    2020/07/23 はりきり(Mr)
    2020/07/31 日本との合意
    2020/11/09 予防効果は90%以上
    2021/02/03 Pfizer-BioNTech COVID-19ワクチンの組成
    2021/06/10 追記(審査結果報告書)
  • [Vc] アデノウイルス・ベクター・ワクチンとは – 新型コロナウイルスのワクチン開発で威力を発揮する – 必要な遺伝子のみを残す試行錯誤で、現在は第三世代  [2021/02/26]

    [Vc] アデノウイルス・ベクター・ワクチンとは – 新型コロナウイルスのワクチン開発で威力を発揮する – 必要な遺伝子のみを残す試行錯誤で、現在は第三世代 [2021/02/26]

    アデノウイルス・ワクチン

    アデノウイルス(adenovirus)を利用した治療薬の代表は、遺伝子治療薬です。adenovirusを用いた研究は歴史があり、遺伝子治療用のadenovirusは、最新世代の改変型adenovirusが使用されています。

    使用されるワクチン用のadenovirusは、目的に適した改変adenovirusが使用されるはずですが、前世代adenovirusが使用されているようです。この部分は、十分に把握できていないので、今後の調査を進めたいと思っています。

    アデノウイルス・ベクターを使ったワクチンとして代表的なものは、やはり、Astrazeneca社のCOVID-19ワクチンです。2021年中には、日本でも集団摂取が予定されています。Astrazeneca社のワクチンに関する情報は、後半に述べています。

    adenovirusのウイルス膜表面に、目的の抗体を作りたいウイルスの膜表面タンパク質を発現さたり、ベクターとして組み込んだ遺伝子に目的のタンパク質を発現させることも可能です。現在、新型コロナウイルスのワクチンとしてAstrazenecaの臨床試験が行われているadenovirus vector vaccineがあります(2020)、mRNAなどの核酸ワクチンと比較して、細胞免疫を惹起するため強いワクチン効果が期待できます。ただし、ワクチン効果以外の服反応も起こるため、免疫獲得として摂取できる回数は少ない数回に限定されます。核酸ワクチンの場合は、副次的な反応が理論上はないため、複数回の免疫が可能です。抗体ができるまで、複数の免疫も可能と考えられます(2020/09/08)。

    adenovirus vector vaccine (アデノウイルス・ワクチン)は、核酸ワクチンの原理と比較して、抗原提示に関するT細胞の免疫応答が強まる(細胞免疫)、感染細胞への殺傷効果が高い可能性があることから、よりワクチン効果が高い期待があります source: Adenoviral Vector-Based Vaccines and Gene Therapies: Current Status and Future Prospects, 2018

    上記参照文献は、adenovirusに関わる情報を網羅的によくまとめられおり、初学者には貴重な情報源となります。以下、原文の英語を日本語にまとめるとともに記載分類を再編成しレジメ化しました。以下の(数字)は、原文での参照文献番号を表しています。

    • 遺伝子投与(核酸ワクチン)による抗原の産生では、抗体の生成は可能だが、抗原提示に関するT細胞の免疫応答が弱い可能性 (核酸ワクチンの弱点の可能性)
    • adenovirusのウイルス膜表面への抗原提示、あるいはAdenorirus自体によるアジュバント効果(可能性)では、抗体の生成とT細胞の免疫応答のどちらも強力に得る可能性が高まる

    adenovirus

    adenovirusの特徴は、DNAウイルスであり以下の通りです。

    • カプシドとゲノムで構成されている
      • 表面抗原を構成するタンパク質は、(1)ペントン、(2)ヘキソン、(3)ファイバー
    • 血清型間で、ヘキソンの超可変領域とファイバーのエピトープ配列の不均一性が高い
    • 殆どの人は抗体を持っている
    • サイズ : 70 ~ 90 nm
    • 26~45kb二本鎖DNAゲノム、両端に100-140bpのフランクを持つ2つの逆方向末端反復を含む
    • 相補のDNAはそれぞれタンパク質をコードしている(双方向)
    • オルタネイティブ・スプライシングによりmRNAの異なるポリA修飾を使用する

    遺伝子導入実験ハンドブック — タカラバイオ —

    AAV (Parvoviridae) : ssDNAウイルス, 5kb, 18-26nm, P1レベル, 染色体への積極的なゲノム組み込み(-)
    adenovirus (Adenoviridae) : dsDNAウイルス, 36kb, 70-90nm, P2レベル、染色体への積極的なゲノム組み込み(-)
    lentivirus (Retroviridae) : ssRNAウイルス, 8-9kb, 80-130nm, P2レベル, 染色体への積極的なゲノム組み込み(+)

    by Mr. Harikir (2021/02/11)

    https://catalog.takara-bio.co.jp/PDFS/transgenesis_experiment.pdf
    • 遺伝子は、それぞれ5つの初期遺伝子と後期遺伝子に分けられる
      • 初期遺伝子 : E1, E3, E4は、自然免疫を抑制する
        • E1
          • E1A
            • ウイルスDNA合成に必要な遺伝子の転写の活性化
            • 宿主細胞への影響 : p53依存的と非依存的によりアポトーシス(ハイジャックアポトーシス)を誘導(9)
            • immuning回避(T細胞への抗原提示の減少(67) )、腫瘍形成(60,61)
          • E1B
            • 宿主タンパク質(p53, Bak, BAX)への結合によりアポトーシスを阻害する(68~79)
        • E2
        • E3 : 免疫調節機能
          • 感染細胞を免疫細胞から認識されないようにする (78)
            • 検出MHCクラスI分子の表面輸送の遮断
            • 宿主細胞の表面にあるNK細胞受容体を減少させる
          • Death receptorsのダウンレギュレーションすることにより、adenovirus感染細胞のアポトーシスを阻害する
        • E4 (74, 75, 76, 77)
          • E1B-55とE4のタンパク質は、Daxxタンパク質を誘発することで、抑制されているウイルスのゲノム発現を可能にする
          • E1B-55kとE4の結合タンパク質は、自然免疫である抗ウイルス応答を抑制する
        • 細胞に取り込まれた時に発現する
        • タンパク質合成、ウイルス複製に必要な宿主遺伝子の発現調整
      • 後期遺伝子
        • L1-L5
        • アセンブリ、放出、宿主細胞の妖怪(1,5,6)
    • 非エンベロープ
    • 20面体DNAウイルス
    • 50以上の血清型 (遺伝的に多様)
    • Adenoviruses (Adenoviridae) (10,11,12)
      • Mastadenovirus
        • 動物のアデノウイルス(サル、ウシ、ヒツジ、ブタ、イヌ)
        • ヒトのアデノウイルス (Human Adenoviruses; HAd)
          • 7つ (A ~ G)
          • 血清学的特徴では、67種類、更にサブグループ
      • Aviadenovirus
      • Siadenovirus
      • Atadenovirus
      • Ichtadenovirus
    • 宿主組織 : 眼、呼吸器、胃腸の上皮など生命の危機に関わらない感染
    • 1953年、Roweらにより組織から分離された(2)
    • ヒトと動物の間で無症状の気道感染症を起こす
    • 免疫不全の患者では生命に危険がおよぶ場合がある
    • 殆どのヒトで中和抗体を有している(3)
    • 癌療法に使用される(4)
    • 構成タンパク質(6, 7, 8)
      • ヘキソン
        • 主たる表面タンパク質(270 x 3量体)
        • 超可変領域を含む。この領域を利用してワクチン抗原にできる
      • ペントン
        • 20面体の12の頂点に12 x 5量体
        • ファイバーと共に宿主細胞の受容体のリガンドとなる
      • ファイバー
        • 12の3量体が突出している
        • ペントンと共に宿主細胞の受容体のリガンドとなる
      • IIIa
        • カブシドの内側に位置する
        • 頂点領域の裏打ちと内包するウイルスゲノムの組み立てに寄与する
      • VI
        • 内側と外側のカプシドシェルをリンクする
      • VIII
        • ヘキソンの裏打ち
      • V, VII, IX
        • DNAゲノムに関連し、ビリオンのコアを構成
        • 末端タンパク質は、2本鎖DNAの末端に結合し、複数のVにより作られたコアとリンクして位置を安定化

    アデノウイルスに対する免疫

    宿主におけるウイルス認識

    adenovirus、その部品を認識するもの (27,28,29,30,31.32,33,34,35,36,37,38,39,40,41)

    • 細胞内でのバターン認識受容体 (PRR)
      • adenovirus由来の5’-triphosphateを持つ2本鎖RNAは、RIG-Iなどのcytosolic PRRに認識される
      • DNA, RNAは、TLR3, TLR7, TLR8などのエンドソーム膜(endosomal membrane)にあるintracellular PRRsに認識される(48,52,53,54,55)
      • 2本鎖DNAの生体内認識 (34,35,56,57)
        • TLR9
        • DNA-dependent activator of IRFs (DAI)
        • DNA-dependent protein kinase (DNA-PK)
        • IFNγ-inducible protein 16 (IFI16)
        • DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41)
        • cyclic guanosine monophosphate-adenosine monophosphate (cGAS)
    • 病原体関連分子パターン (PAMP)
    • PRRがPAMPを感知する
    • ウイルス(病原体)であると認識すると、1型インターフェロンを発現しウイルス抑制、炎症性サイトカイン発現 (23,24,25,26,27)
    • receptor : Coxsackie adenovirus receptor (CAR)
      • 促進因子 : IL-8, TNF-α
    • integrin αvβ5 heparin sulfate proteoglycans
    • CD46
    • sialic acid
    • scavenger receptors (マクロファージ、樹状細胞)(33)
    • Toll-like receptors(TLRs)
    • RIG-I like receptors(RLRs)
    • nucleotide-binding oligomerization domain (NOD-like receptors (NLRs)
    • cytosolic DNA sensors
    • effector molecules
    • CD46, desmoglein-2 (type B Adのmacropinocytosis)(39,40)→ IL-12で誘発されるINF-γの産生を抑制する
    • 細胞のβ3インテグリンは、pentonのAgr-Gly-Asn (RGD)モチーフに親和性あり

    Vectorとしての良くない免疫応答

    • adenovirus粒子のみでは自然免疫の誘導は不十分であり、その原因は、DNA由来として残っている(51)
    • 肝臓、脾臓のマクロファージの活性化(42,43)
    • MCP-1, RANTES(TLR2依存性)の活性化
    • IL-1抗体は、adenovirusによる角膜の炎症反応を低減化する(mouse)(45,46)
    • TLR9(E1, E3欠損adenovirusでも感知する→角膜炎症、IL-6,IFNα産生)(49,50)
    • plasmacytoid dendritic cells (pDCs)は、TLR9-MyD88依存、myeloid DCs (mDCs)は依存しない(48)
    • 細胞免疫
      • CD4+ Th1細胞
      • CD8+ T細胞

    adenovirus vector

    adenovirus vectorの特徴

    • HAd5は遺伝子送達用ベクターとして開発された
    • 非複製性
    • 広範囲な組織指向性
    • ゲノム解析が進んでいる
    • 大きなDNA遺伝子挿入が可能
    • 宿主ゲノムに組み込まれない
    • 宿主細胞の核にepsomeとしてDNAが残る
    • 36kbの遺伝子をパッケージング可能
    • 自然免疫(先天性免疫)シグナルを活性化することでワクチンとしての利点がある(21,130)
      • 効果的な免疫細胞刺激→適応免疫(獲得免疫)である液性・細胞性の免疫応答
      • 細胞内の病原体の解決には、CD8+細胞障害性Tリンパ球(CTL)が重要
      • adenovirus vectorで運ばれる抗原は、
      • MHCクラスI分子を介してT細胞に提示されるめた、adenovirus vectorは、堅牢なCTL応答を誘導できる
      • CTLは、ウイルス感染細胞、細胞内病原体、ガン性細胞を強力に認識し死滅できる
    • 抗体産生及び導入遺伝子て特異的T細胞の誘導
    • 必要な遺伝子をadenovirusから分離し、HEK細胞に担わせることで、共同してベクターを産生させる
    • adenovirusのタンパク質とHCVのタンパク質の相同性が高い

    遺伝子治療におけるadenovirus vectorの歴史

    繰り返し投与により体液性免疫、細胞性免疫、細胞性細胞毒性、発癌などの課題に直面した(129)

    • 1992年、alpha-1 antitrypsin (A1AT)欠損症(124, 125)
    • 嚢胞性線維症 (CFTR遺伝子)(126)
    • 尿素回路関係(オルニチントランスカルバミラーゼ)(127,128)

    ワクチンにおけるadenovirus vectorの歴史

    • HIVワクチン 2003年~2006年、Merck(131)
      • HAd5 vector-based

    第1世代

    アデノウイルス・ベクターは、HEK293細胞とともに改変が進められてきた(2021/02/11, by MR.HARIKIRI)。

    • First generation
    • E1削除
      • 初期、後期のウイルスタンパク質は、濃度依存的にMHCクラスIによる抗原提示により細胞死を誘発するが、それをホスト細胞以外では産生できないことにより毒性低減化に繋がる(104,105)
      • 削除により非複製アデノウイルスとなる (HEK293(ヒト胚性腎細胞), PER.C6などのE1トランスフェクト細胞を使用する (93)
      • HEK293には、E1領域にトランス相補性を入れている(組織形質導入能力)
      • 自然相同組換えが起こり複製力のあるadenovirus(RCA)が出現する可能性を持っている(98)
      • RCAのリスク低減としてのPER.C6では、独自のプロモーター(PGK)を持つadenovirusのE1領域の発現カセットを使用し相同領域を削除(99,100)
      • 4.5kb導入可能となった (92)
    • E3削除
      • 免疫学的経路の阻害(101)が知られている
      • 完全に削除された(102)
      • 8kb導入可能となった(103)

    第2世代

    増殖中の複製能力のあるadenovirus生成の可能性を排除できたが、導入遺伝子の発現が少ないとされる。依然として残る課題は、免疫原性と細胞毒性である。

    • Second generation
    • E1削除 : 第1世代から継承
    • E2削除
    • E3削除: 第1世代から継承
    • E4削除
    • 10.5kb導入可能となった

    第3世代

    ITRとパッケージングシグナルを除く全てのウイルスシーケンスを削除(114)

    • Third generation (114)
      • ITRs
      • packaging signal
    • Helper Dependent or gutless adenoviral vectors(115, 116, 117)
    • high capacity adenoviral vectors (HCAds)と呼ぶ
    • 2種類のvectorが必要(トランスフェクション)
      • Helper virus
        • ホスト細胞に組み込んでいたウイルス遺伝子補完遺伝子をHelper virusで提供により、adenovirusタンパク質を合成可能となる→ capsidのアセンブリ→HCAD genomeのパッケージング
        • HCAdsのみのパッケージングが可能
        • packaging signal flanking loxP siteを含む
          • Helper virusのパッケージングシグナルは、loxP siteのCreを介した組換えにより阻害されることで、Helper virusのgenomeがadenovirus粒子に集まるのを防ぐ(機能が十分でない場合、Helper Virus汚染の問題が生じる)
      • HCAd genome
        • ITRsを含む
        • packaging signalを含む
    • HEK293細胞
      • constitutivery express Cre recombinase
    • Helper virus
    • 免疫原性と細胞毒性の低減化(118,120,121,122)
    • 課題は、生産方法が複雑、Helper virusの汚染問題(123)
    • 36kb導入可能となった

    新型コロナウイルス・ワクチン

    現在、世界で喫緊の課題である新型コロナウイルス(SARS-CoV-2)に対するワクチン開発は、イギリス(英国)のアストラゼネカ(Astrazeneca)が最も進んでいるようです。

    英国のAstrazenecaとOxford大学が共同開発しているSARS-CoV-2の感染症(COVID-19)ワクチンは、アデノウイルスをベクターとして使用するAdenovirus vector vaccineです。

    現在、臨床試験は、~10,000人程度を予定されるPhase III試験に入っており、今年中には、20億ドーズの供給が始まると言われています。日本へも1億ドーズを供給する準備があると言っています。Phase I/II試験(約1,000人)の結果、中和抗体の上昇と感染した細胞を破壊するT細胞の誘導が確認されており、結果は良好のようです。1回投与では90%代の効果、2回投与では100%の効果が確認されました。2回投与の場合、日本への1億ドースは、5,000万人分の計算になります。

    Phase I/IIの臨床試験の内容は、以下の記事もご参照ください。

    編集情報
    2020/07/22 Mr.HARIKIRI
    2020/07/25 追記 (adenovirusの網羅的情報)
    2020/08/03 文言整備
    2020/08/08 文言整備
    2020/09/08 追記(細胞免疫)

    以上

  • [Bio-Edu] AAV血清型別の組織別の感染親和性 – 感染とインテグレーション [2023/10/31]

    [Bio-Edu] AAV血清型別の組織別の感染親和性 – 感染とインテグレーション [2023/10/31]

    AAVの感染とは

    AAVのウイルス粒子表面を覆っているカプシドタンパク質の構造の違いで血清型が定義されています.このカプシドタンパク質が,細胞表面の受容体に親和性が高い場合に感染対象となり感染が容易になります.AAV1(血清型1)は,筋肉や肝臓に高い感染効率を示し,AAV5は中枢神経系や網膜などに高い感染性を示します.

    また,アデノウイルス,レトロウイルスよりも抗原性が低いため近年,AAVを用いた遺伝子治療薬の開発が多く進められています.更に,AAVは,血清型によっては,免疫反応,中和抗体の産生を更に低減できることから,AAVを用いて遺伝子の運び屋(ベクター)として期待が高まっています.遺伝子治療に用いられる場合,製薬メイカーは,更に改良を加えて,治療効果の向上,副作用の低減化を独自の技術で図っています.

    一般的にウイルスの副作の1つとしてウイルス遺伝子が細胞のゲノムにインテグレーションすることが多きな問題になります.AAVの場合,AAV の遺伝子はAAVS1遺伝子座にインテグレートします.しかし,recombinant AAV (rAAV) vectorでは、REP遺伝子(主に酵素活性)とCAP遺伝子(カプシド)の2つの遺伝子を除去しているためインテグレートされない理由です(ハリキリ解説: 天然のAAVではREP/CAP遺伝子がAAVのその他遺伝子と一体になっていることと比較して,rAAVでは,REPとCAP遺伝子は,ベクターとして個別に用意していることとの違いがあり,これによりインテグレートされない理由となっていると,現時点でのハリキリの余り深くない理解です)

    REPタンパク質は,エンドヌクレアーゼ,ヘリカーゼ,ATPaseなどの節制を持ち,AAVゲノムの両端にある逆位反復配列(ITR)と結合して,ウイルスDNAと宿主DNAの間で切断や結合を行います.REPタンパク質は,宿主細胞の染色体上のAAVS1領域と親和性が高いため,インテグレーションのして安定的な潜伏感染状態をつくることになります.以上が,天然のAAVは,宿主細胞の染色体上にAAV遺伝子を自ら挿入(インテグレーション)できる仕組みです.

    感染した細胞は,エピソーム(episomal)のままであり、非分裂細胞(non-dviding cell)内に長期間維持される可能性があります。

    AAV血清型の違いによる組織別の感染親和性

    参考にした情報は、2007年の日本の文献と、CMOサーピスを提供しているVIGENE社のサイトの2つです。

    組織; tissueAAV1AAV2AAV3AAV4AAV5AAV6AAV7AAV8AAV9AAV-DJ
    由来サルヒトヒトサルヒト1型+2型サルサルヒト
    筋; muscle✔︎
    +++
    ++++✔︎++✔︎
    ++
    ✔︎
    ++
    肝臓; liver++++++✔︎
    +++
    ✔︎
    ++
    ✔︎
    肺; lung(+/-)(+/-)✔︎✔︎✔︎
    (+/-)
    中枢神経; central nervous system✔︎
    (+/-)
    (+/-)✔︎✔︎✔︎✔︎
    網膜; retina✔︎✔︎✔︎✔︎
    膵臓; pancreas✔︎
    腎臓; kdney✔︎✔︎
    心臓; heart✔︎✔︎✔︎
    https://www.vigenebio.com/aav-packaging/ 「✔︎」で表示した情報源

    4. AAVを利用した遺伝子治療
    ウイルス 第57巻 第1号, pp.47-56, 2007
    (表中の「+」、「-」、「+/-」で表示した情報源です)

    http://jsv.umin.jp/journal/v57-1pdf/virus57-1_047-056.pdf

    アデノ随伴ウイルス(AAV)ベクターによる遺伝子導入

    アデノ随伴ウイルス(AAV)ベクターによる遺伝子導入|タカラバイオ株式会社 (takara-bio.co.jp)

    編集履歴

    2020/06/23, Mr.Harikiri
    2023/10/31, 追記 (AAVの感染と遺伝子のインテグレーション)