タグ: vaccine

  • [Vc] 核酸ワクチンとは DNAワクチンとmRNAワクチン – ベクターワクチンとの違い –  ID15040 [2020/09/10]

    [Vc] 核酸ワクチンとは DNAワクチンとmRNAワクチン – ベクターワクチンとの違い – ID15040 [2020/09/10]

    ID15040

    核酸ワクチン

    ワクチンの目的は、病原性の抑制に直接的/間接的に関わるタンパク質に対する抗体の誘導である。核酸ワクチンには、DNAワクチンとRNAワクチンがあり、目的タンパク質の遺伝子コードに関わり長所/短所が存在する。製造し易さ、ワクチン能力に関わる投与量は製造規模に影響する。副作用の問題も加味して、それぞれの目的に応じて選択される。

    核酸ワクチンでは、従来のタンパク質性ワクチンでは無く、目的のタンパク質の設計図である遺伝子を使う。遺伝子には、DNA(特にplasmid DNA; pDNA)とmRNAがあり、それぞ長所/短所がある。よく似たアプローチとして、ベクターワクチンという種類のものもある。これらは、それぞれ異なるモダリティである。

    • 核酸ワクチン
      タンパク質の設計図であるDNAやmRNAそのものを体内に注入して、細胞内に到達した時には、それが遺伝子をコードしているタンパク質を作らせ、それを異物として認識されることで、免疫抗体が作られる
    • 核酸の保護剤
      核酸(DNAやmRNA)をLNP*1でナノパーティクルにすることで、目的の遺伝子を細胞内に導入し易くさせる。これはをDrug Delivery System (DDS)と言い、mRANの送達技術の進歩によりmRNAを使用した医薬品開発が進展してきている。Precision NanoSystems Inc.mRNA-LNP技術については、下記、「関連記事」参照
    • 参考 : ウイルスベクターワクチン
      ウイルスの病原性を欠損させて、細胞への感染機能により細胞内に到達させ、タンパク質をコードする遺伝子を細胞内にリリースさせることができる。日本では、阪大の仙台ウイルス・ベクター(下記参照)、世界では、AstraZenecaのAdenovirus Vector vaccine などがある
    • ADE
      ワクチンの副作用として知られる、ワクチン接種後の抗体依存性感染増強(Antibody Dependent Enhancement:ADE)は、症状を悪化させる副作用であり、ワクチン開発にとって重要な評価項目である 参考SOURCE:NIKKEI

    導入された遺伝子は、コードされたタンパク質を産生する。このタンパク質が細胞外に分泌されて、免疫系が働けば、その結果としての抗体が産生される。核酸ワクチンでは、ウイルスベクターワクチンと比較して、液性免疫は起こるものの、細胞性免疫があまり期待ができないこと言われており、メリットでありデメリットである。細胞性免疫があれば、より強固にワクチン効果を期待できる。反面、ウイルスベクターワクチンでの細胞性免疫が生じ安いということは、何回も免疫をすることは、不要な免疫も生じることからデメリットでもある。

    核酸には、DNAとmRNA

    plasmid DNA (pDNA)、mRNA、いずれも細胞内に目的遺伝子を選ぶ事は可能です。

    pDNAは、大元の設計図が含まれていて、これがmRNAに変換される幾つかのステップが必要です。RNAは、直接的に目的のタンパク質に変換されます。

    高分子ナノテクノロジーが切り拓く 核酸医薬デリバリー Drug Delivery System 31-1, 2016 – 核酸医薬とDDS – より

    https://www.jstage.jst.go.jp/article/dds/31/1/31_44/_pdf

    DNAワクチンとRNAワクチンのメリット/デメリット

    DNAワクチン

    • 文献4)
    • 分解を受けにくい
    • 一般的に組換え大腸菌により大量製造が容易
    • (細胞内でタンパク質を作るには、いったんmRNAに変換されなければならない)
    • 細胞のゲノムに組み込まれて(相同組換え)しまう危険性(癌原性のリスク)が全く無いわけではない。医薬品としては、その辺りの確認が重要となってくる。
    • 抗DNA抗体が産生されやすかったり、不要な免疫活動が起こる

    mRNAワクチン

    • 文献1), 2), 3)
    • 分解を受けやすい (ため、LNP*1 の技術が重要となってくる)
    • 一般的に大量製造が難しい
    • (細胞内に到達できれば、直接的にタンパク質の変換に使われる)
    • 研究がこれまで進まなかったが、mRNAワクチンとして、moderna社が躍進していたが、Pfizer/BioNTech社の新型コロナワクチンが一番最初に世界に上市された
    • 日本のRNAワクチンでは、仙台ウイルス(SeV)ベクターの開発が進んでいる3)

    関連記事

    編集履歴
    2020/05/02 はりきり(Mr)
    2020/05/08 追記 (作用機序、DNAワクチン開発状況)
    2020/05/28 追記 (拡散には、DNAとmRNA)、訂正
    2020/08/03 個別記事(DNAワクチン、RNAワクチン)のリンク追加
    2020/08/06 修正 (混在していたベクターワクチンとDNAワクチンの説明を訂正)
    2020/09/10 追記 (液性免疫と細胞性免疫について)
    2021/02/24 文言整備

    以上

    参考文献

    1) RNAワクチンの開発

    RNA ワクチンの開発:感染症への応用 - 長谷川 護 (ディナベック)、バイオロジクスフォーラム 第9回学術集会

    http://www.nihs.go.jp/cbtp/home/Biologics-forum/BF9/DrHasegawaM.pdf
    2) RNAワクチン

    RNAワクチン
    安全、効率的かつ汎用性に優れた新しいRNAワクチンの開発 –

    http://inewsletter-king-skyfront.jp/jp/research_highlights/vol-11-research01/
    3) ベクターワクチン

    ベクターワクチン
    センダイウイルスベクターを利用した ワクチン技術の開発

    https://www.jstage.jst.go.jp/article/dds/22/6/22_6_636/_pdf
    4) 新型コロナのDNAワクチン開発状況

    アンジェス山田社長、新型コロナのDNAワクチンの開発状況を明らかに – 日経バイテク 2020

    https://bio.nikkeibp.co.jp/atcl/news/p1/20/03/26/06735/
    5) DNAワクチン

    DNAワクチン
    来春にも新型コロナ感染予防DNAワクチン実用化へ 森下竜一氏 (大阪大学大学院医学系研究科 臨床遺伝子治療学寄附講座教授)に聞く 2020

    https://iyakutsushinsha.com/2020/04/22/来春にも新型コロナ感染予防dnaワクチン実用化へ/
    6) DNAワクチンの作用機序を解明

    遺伝子(DNA)ワクチンの作用機序を解明, 2008, 科学技術振興機構報 第473号

    https://www.jst.go.jp/pr/info/info473/index.html
    7) 新型コロナワクチンに適したモダリティはあるのか?

    1章 新型コロナワクチンに適したモダリティはあるのか?, 2020 – 日経バイオテク –

    https://bio.nikkeibp.co.jp/atcl/report/16/082400016/072000119/
  • 気になる企業 – Moderna – 新モダリティ(mRNA)・ワクチン (新型コロナウイルス) で駆ける / Phase IIIの中間結果では94.5%の有効性を示す – LNP製剤による2~8℃保存が可能である優位性 –  ID15029 [2020/12/03]

    気になる企業 – Moderna – 新モダリティ(mRNA)・ワクチン (新型コロナウイルス) で駆ける / Phase IIIの中間結果では94.5%の有効性を示す – LNP製剤による2~8℃保存が可能である優位性 – ID15029 [2020/12/03]

    Moderna

    HomePage

    MODERNAは、いち早く、新型コロナウイルスのワクチン開発を進めているIT技術とFA(Factory Automation)を駆使する米国のバイオテクノロジー企業。

    旧来の医薬品開発では達成できない、テクノロジーの連携を究極に進め、mRNAによる個別化医療(多品種-少量生産)モデルを追求している。感染症に対するmRNAワクチンでは、必要となる大量な需要に対しても余念がなく、外部CMOとしてLonzaと連携を発表している。

    • 2020/11/08, 結局は、現時点でワクチン開発の先頭を走っているのは、Pfizer社です。グローバル治験で43,000人余りのPhase III試験で90%の予防効果があるとの中間結果を報告しました。Pfizerは米国から資金提供を受けていません。
    • 2020/11/16, Phase 3の中間結果(95人実薬、90人プラセボ)、94.5%の有効性が示された。2020年末までに2,000人人分を提供する source
    • 2020/10/22, 30,000人がPhase 3臨床試験に登録し、25,654人が2回目の投与を完了しましたsource
    • 2020/07/28, NIHの一部機関NIAIDと共同開発している新型コロナウイルス・ワクチン(mRNA-1273)の臨床試験(Phase III, 30,000人, 2回 x 100μg/28日)が開始された source。来年からは、年間3億回の提供を予定する。
    • LONZAとの製造提携により、20億回の提供も可能としている
    編集履歴
    2020/05/02 Mr.HARIKIRI
    2020/06/03 追記(NorwoodのcGMP施設とビジネスモデル)
    2020/07/28 追記(SARS-CoV-2ワクチンのPhase III clinical開始)
    2020/10/22 追記(SARS-CoV-2ワクチン投与2回目完了は25,000にあまり)
    2020/11/16 追記(SARS-CoV-2、Phase3中間報告では94.5%の有効性を示す)
    2020/12/03 追記 (moderna社のrRNAワクチンはLNP採用による優位性)

    技術力について

    • さまざまな病気や症状に対応するmRNA医薬品の開発に邁進
    • mRNAを医薬品にする技術を主軸 (mRNAテクノロジープラットフォーム)
      • 数百人の科学者とエンジニアからなる専門チームを擁する
      • モダリティsource : 1つの技術ソリューションで多くの (mRNA生物学、化学、製剤とデリバリー、バイオインフォマティクス、タンパク質工学)
        • mRNA予防ワクチン 免疫応答性抗原 (9つのパイプライン)
        • mRNAがんワクチン : ネオ抗原 (2つのパイプライン)
        • mRNA腸内免疫腫瘍 : 抗癌T細胞応答 (3つのパイプライン)
        • mRNAによる局所再生療法 : 標的組織 (VEGF-A)
        • 全身分泌と細胞表面治療 : 抗体・酵素の補充 (3つのパイプライン)
        • 全身の細胞内治療 : 細胞内酵素・オルガネラ特異的タンパク質 (3つのパイプライン)
    • リサーチエンジンsource
      • 数千の前臨床用mRNAの供給できる設備とデジタル技術
      • 「ドラッグデザインスタジオ」は、 数日以内の迅速設計(ワクチンの抗原にふさわしい部分の特定など)と合成指示の連携
      • 自動化された製造で迅速デリバリー
      • 迅速なスクリーニング実験が可能
    • 自社製造設備 sorce
      • マサチューセッツ州ノーウッドには、Phase 2まで対応
        • プロセス開発
        • GLP (IND対応)
        • 毒性研究
        • 薬剤のヒトへの概念実証(PoC)対応

    図2. リポソームにタンパク質を作らせる
    特定のモダリティ内で、基本コンポーネントは、開発候補全体で一般的に同一です- 製剤、5 ‘領域、3’領域。コーディング領域のみが、潜在的な医薬品が細胞に生産を指示しているタンパク質に基づいて変化します。

    主要な課題

    • 免疫システムを回避しながら、mRNAを標的組織および細胞に取り込む
    • 免疫系が誘発された場合、結果として生じる応答はタンパク質産生が制限され、mRNA薬の治療効果を制限される
    • mRNAが自然に生成されたとして、正しいタンパク質を生成するための指示を正確に読み取ることができるリボソーム
    • 細胞がタンパク質を十分に発現して、目的の治療効果を得る
    • 学際的なプラットフォームチームの緊密な連携による科学的および技術的な課題に対処
    • 集中的な機能横断的なコラボレーションによるプラットフォームの高度化と患者への迅速なmRNA薬の提供

    Modernaの強みを垣間見る

    • 米国政府からの支援の速さと大きさ
      • 2020/1/11 : 中国当局から新型コロナウイルス遺伝子配列を世界に共有
      • 2020/1/13 : NIHとModernaは、mRNA-1273の遺伝子配列を選定し、NIAID(米国アレルギー感染症研究所)はPhase I 臨床用製造を開始、資金は、Coalition for Epidemic Preparedness Innovations (CEPI)
      • 2020/02/07 : Phase I用製剤が完成し、バッチリリース試験が始まった
      • 2020/02/24 : NIHに製剤を提出
      • 2020/03/04 : FDAは、NIHが申請していたINDの審査を完了し試験の許可を与えた
      • 2020/03/16 : NIHの発表 (投与開始), シーケンスの決定から最初の投与までに63日で実行できた
      • 2020/03/23 : Modernaによる「Current Report on Form 8-K」を用いた報告。緊急使用の可能性製造能力拡大について、
      • 2020/03/27 : NIHの発表 (アトランタ、エモリー大学でPhase I試験に健常成人ボランティアの登録:18~55歳)
      • 2020/04/16 : BARDAから最高4億8,300万ドルの奨励金をModernaに供給されることを発表
    • 登録ボランティア
      • US, EU and オーストラリア
      • >1,400人が登録
    • モダリティ
      • 複数のmRNAをワクチンとして組み込むことができる
    • 製造設備
      • 自社製造設備を持つ
      • Lonzaとの戦略的提携により製造能力を10倍に拡大できる。技術移管が2020/06より開始され、製造設備がLonzaサイドではスイスやUSに建設される
    • 製造能力
      • worldwide
      • 10億ドーズ/年, 50μg
    • 製造(予定)
      • Lonzaでのファーストバッチ: 2020/07
    • 特許
      • 100を超える特許と、それを補完するライセンスにより事業強度を高めているsource

    Modernaのパイプライン

    sorce

    • 呼吸器感染関連のワクチン
      • mRNA-1273 : 新型コロナウイルス(SARS-CoV-2)ワクチン
      • mRNA-1777 : RSVワクチン(高齢者)
      • mRNA-1345 : RSVワクチン(幼児)
      • mRNA-1653 : hMPV(ヒトメタニューモウイルス)及びパラインフルエンザウイルス3型(PIV3)ワクチン (Phase I, 2020/05/01)
      • mRNA-1273 : 新型コロナウイルス(SARS-CoV-2)
        • Phase I試験は完了Source-NIH(2020/03/16~, 米国アレル感染症研究所によるIND: (25μg, 100μg, 250μg) x 18才から55才(45人) / 追加: 56才から70才と71才以上、合計3つのコホート), 2020/05/01
      • mRNA-1851 : インフルエンザH7N9
    • 母子感染関連のワクチン
      • mRNA-1647 : サイトメガロウイルス(CMV)ワクチン (Phase II, 2020/05/01)
      • mRNA-1893 : Zikaワクチン (研究段階, FDA Fast Track, 2020/05/01)
    • 蔓延しているウイルス関連のワクチン
      • mRNA-1189 : Epstein-Barrウイルス(EBV)ワクチン

    mRNA-1273について

    新型コロナウイルスのワクチン

    mRNA-1273は、 米国アレルギー研究所の ワクチン研究センター(VRC)の研究者と共同で モデルナが選択した、スパイク(S)タンパク質の融合前安定化型をコードするSARS-CoV-2に対するmRNAワクチンです。  

    感染症 (NIAID)、NIHの一部。Coalition for Epidemic Preparedness Innovations (CEPI)から資金提供された最初の臨床バッチは、2020年2月7日に完了し、分析テストを受けました。

    シーケンス選択から42日後の2月24日にNIHに出荷されました。mRNA-1273のNIAID主導の第1相試験の最初の参加者は、シーケンスの選択から第1相試験の投与まで63日、3月16日に投薬されました。SARS-CoV-2に関するこれまでの同社の作業の概要は、ここにあります。 

    NIAID主導の第1相試験について

    mRNA-1273のオープンラベルのフェーズ1研究は、米国アレルギー感染症研究所によって米国で独自のInvestigational New Drug(IND)アプリケーションの下で実施されています。

    2020年3月16日に開始されたフェーズ1研究は完了しました

    元の3つの用量コホート(25 µg、100 µgおよび250 µg)における18歳から55歳までの45人の健康な成人ボランティアの登録 、追加の6つのコホートを:高齢者(年齢56から70)と高齢者(年齢71以上)の3つのコホート。

    Moderna and Lonza Announce Worldwide Strategic Collaboration to Manufacture Moderna’s Vaccine (mRNA-1273) Against Novel Coronavirus, 2020/05/

    https://lonza.com/news/2020-05-01-04-50

    自社施設

    施設

    • マサチューセッツ州ノーウッド
    • 期間 2016/10~ 2018/07
    • 2018/07以降、100以上の臨床製造パッチの実施
    • >300人
    • 200,000ft2 (更に220,000ft2の余力)
    • MES (Manufacturing Execution System)から規制申請の統合
      • 製造記録、データおよび自動化の統合
      • デジタル管理システム
      • 資材管理
      • 製造の実行
      • ラボ情報
      • 製品のテストとリリース
      • 規制申請情報のデジタル統合の保証

    目的

    • 原材料から臨床用の出荷を内製化
      • 品質、速度、規模、コストの改善
      • 貯蔵寿命
    • INDのための属性試験の早期取得
    • DP製造 (Phase I ~ Commercial)

    機能

    • プロセス開発
      • 凍結乾燥研究→凍結から冷凍保存を可能にする
    • Plasmid調製
    • mRNA調製
    • LNP調製
    • FFF (formulation, fill, finish)
    • QC

    Make Engine 1 (for Pre-clinical)

    • mRNA調製 (配列設計から製剤化) : ~4 weeks
    • mRNA lots : 1,000/month
    • amount : 1~1,000mg/Lot
    • Experience : 23,500 batch since 2014
    • Moderna Eco System : 追跡システム(材料~製造開始~配送)
    • 製造性の最適化 : 人工知能、機械学習、独自アルゴリズム

    Make Engine 2 (個別化医療)

    • 患者のサンプル(Tissue sample: Tumor and Blood)から個別のmRNAを作る (Needle to Needle)
    • 1つの製造バッチが1人の患者のために
    • Personalized Vaccine Unit (PVU)
    • 腫瘍サンプルのシーケンスからPersonalized Cancer Vaccine (PCV)を自動的に設計
    • 独自のバイオインフャマティクク設計アゴリズムとリンクしたmRNAの自動製造

    Make Engine 3 (臨床試験用資料の提供)

    • 2つのcGMP施設(Norwood, Kembridge )
    • デジタル統合された電子製造記録
    • 冗長性のためにCMO委託製造

    mRNAの剤型

    ModernaのmRNAワクチンの剤型は、以下の文献の通りLipidNanoparticle (LNP)sourceを採用sourceしており、新型コロナウイルスに対するmRNAワクチンの保存が、2-8℃で30日間可能であり、Pfizer & BioNTechのmRNAワクチンの保存が-80~-60℃であることとの差別化に寄与している。医療機関においては、-80 ~ -60℃仕様のディープフリーザー保有率は極めて低い。

    これまで、製造はCMOに頼ってきたが、自社の施設をNorwoodに建設、およびそのメリットについて。

    BACKGROUND ON MODERNA MANUFACTURING WHY NORWOOD, 2020

    https://www.modernatx.com/sites/default/files/Moderna_MFG_Digital_WhitePaper_Final.pdf

    Lipid Nanoparticle Systems for Enabling Gene Therapies

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498813/

    COVID-19ワクチンの各社の開発状況 (moderna, inovio, novavax, pfizer, など)

    – ワクチン開発のお話(その2):ワクチン製造方法とCOVID-19ワクチン開発状況 – 城西国際大学 看護学部 大森 直哉

    https://www.jiu.ac.jp/features/detail/id=6587

    関連記事

  • [Bio-Edu] DNAワクチンとは – 2008年までの論文から、免疫細胞へのプラスミドDNAの取り込みにより特異抗体が産生される – ID13931 [2020/04/21]

    [Bio-Edu] DNAワクチンとは – 2008年までの論文から、免疫細胞へのプラスミドDNAの取り込みにより特異抗体が産生される – ID13931 [2020/04/21]

    DNAワクチンとは

    1998年、2000年および2008年の論文から、DNAワクチンの作用機序を調査した。最近の論文調査は今後追加する。

    1998年現在

    1998年には、DNA vaccination, genetic immunizationと呼ばれている。作用機序は不明。

    • DNAワクチンの特徴としては強力な細胞性免疫の誘導能
    • 生ワクチンの長所と, 生きた病原体を使用しないため安全性が確保されるというペプチドワクチンの長所を具備
    • 合成が容易で保存性に優れ, 経済性, 長期にわたる免疫反応が持続するなどの面で従来のワクチンより優れている

    DNAワクチンの現状と展望 (1998) – J-STAGE – より

    https://www.jstage.jst.go.jp/article/jsb1944/53/2/53_2_407/_article/-char/ja/#article-overiew-references-wrap

    2000年現在

    • アレルゲン遺伝子を組み込んだプラスミドDNAを接種することによってアレルゲン特異的Th1細胞が誘導できる
    • アレルゲン特異的Th2細胞の応答を抑制でき, アレルギー反応を抑制することができると考えられる
    • DNAワクチン接種の際の条件, たとえば投与方法や投与部位の調節, あるいは, アジュバントや補助シグナル分子を発現するプラスミドDNAの併用により, 免疫応答を操作できることが明らかになってきている.

    DNAワクチン (2000) – J-STAGE – より

    https://www.jstage.jst.go.jp/article/iryo1946/54/2/54_2_89/_article/-char/ja/

    免疫細胞と非免疫細胞 (2008)

    1. 免疫細胞が抗原特異的抗体を産生

    阪大の研究成果により、作用機序が明らかになってきた。

    • DNAの右巻きの二重らせん構造(B-DNA)注2)が細胞内でTank-Binding Kinase 1 (TBK1)注3)という酵素(シグナル伝達分子)を介して自然免疫系注4)を活性化
    • このことが、ワクチンの内因性アジュバント注5)として作用し、自然免疫系活性化のシグナルがDNAワクチンの効果発現に必須である
    • DNAワクチンの効果のうち、抗体の産生のためには樹状細胞などの免疫細胞でのTBK1依存性の自然免疫活性化が重要
    • T細胞による細胞性免疫の活性化のためにはDNAを取り込んだ筋肉細胞などの非免疫細胞でのTBK1の活性化も重要
    • この論文は、2008年2月7日(英国時間)発行の英国科学雑誌「Nature」に掲載
    • DNAワクチンとは、プラスミドDNAと呼ばれる細菌由来の環状DNAに抗原を発現する遺伝子を組み込んだもの
    • 生体に投与すると、その抗原に特異的な免疫反応を誘導
    • 製法が簡便でコストも抑えられる
    • 動物用ワクチンとしてウマの西ナイルウイルス感染症、養殖サケのウイルス感染症、ペット犬の悪性黒色腫(メラノーマ)に対するDNAワクチンが北米で認可され、実際に使用されている
    • DNAワクチンがなぜ効くのか解明はあまり進んでいません。
    • 特にDNAワクチンが持つアジュバント効果に関しては、ワクチンのプラスミドDNAに存在するCpGモチーフ注6)という特殊な配列がトル様(よう)受容体9(Toll-like receptor 9, TLR9)注7)によって認識されることで起こる自然免疫系の活性化によるものと思われていました(図1)
    • この自然免疫反応はDNAワクチンの効果に無関係であるとの報告がある。
    • 今回の研究成果
      • TLR9ノックアウトマウスでも、ワクチン効果があった
      • I型インターフェロン注9)の受容体遺伝子ノックアウト・マウスの場合では、ワクチン効果が顕著に低下
      • 従って、I型インターフェロンを誘導する経路が重要である。
    • 一方で、B-DNAがTLRを介さずに、TBK1というシグナル伝達分子(酵素)を介し、炎症性サイトカイン注10)やI型インターフェロンを産生することを発見
    • 核酸(DNA)の自然免疫賦活化作用はTLR9を介する病原体(細菌やウイルス, 塩基配列(CpGモチーフ)である
    • ウイルス、宿主細胞両方に見られるDNAの二本鎖DNAの右巻き構造が、TLRに依存しない強いインターフェロン産生能を持つことが示された。
    • 樹状細胞などの免疫細胞
      • TBK1遺伝子を持つマウスでは、(1)抗原特異的な抗体の産生(液性免疫)、(2)ヘルパーT細胞の誘導
      • TBK1遺伝子を持つマウスでは、細胞障害性T細胞(CTL)の誘導
    • 筋肉細胞などの非免疫細胞
      • 状況(1)と(2)のワクチン効果は、見られなかった。
      • TBK1遺伝子を持つマウスでは、細胞障害性T細胞(CTL)の誘導が見られる
    • (A) DNAワクチンによる抗体産生には樹状細胞などの免疫細胞でのTBK1依存性の自然免疫活性化経路が重要である
    • (B) 細胞性免疫誘導のためにはDNAが主に取り込まれる筋肉細胞などの非免疫細胞における、TBK1依存性の自然免疫活性化シグナルも働いていること、
    • (C) 免疫・非免疫細胞双方における自然免疫活性化が相互に作用し合っている

    2. 副作用関連

    • DNAはいくつかの自己免疫疾患、たとえば全身性エリテマトーデス(SLE)(自己のDNAに対する抗体ができる原因不明の疾患)などの発症、増悪の機序に関与している可能性がある

    遺伝子(DNA)ワクチンの作用機序を解明(DNAワクチンの本格開発にはずみ)2008 – 大阪大学免疫学フロンティア研究所

    http://www.ifrec.osaka-u.ac.jp/jpn/research/20080207-0524.htm

    細胞性免疫

    編集履歴

    2020/04/21 はりきり(Mr)
    2020/07/24 追記 (細胞性免疫)
  • [医薬品] デング熱ワクチン「Dengvaxia」- ID3127 [2019/11/11]

    [医薬品] デング熱ワクチン「Dengvaxia」- ID3127 [2019/11/11]

    Dengvaxia

    Sano first Pasteur社のデング熱ワクチンDengvaxiaが、FDA二より流行地での使用を承認された(2019/05/22)。血清型1~4型に対応する。

    安全性と有効性は、プエルトリコ、中米、アジア太平洋地域において3万5000例を対象として3本のプラセボ対象試験で検証された。有効率76%。

    初めてデング熱ウイルスの感染では、無症状、もしくはインフルエンザ感染に似た症状を呈する。重症化する場合は、胃痛、出血、呼吸困難、精神錯を呈する(デング出血熱: HDF)。

    毎年、世界で4億人がデング熱ウイルスに感染し、その内50万人がHDFに進展する。さらに、2万人が死亡する。