カテゴリー: BIOLOGICS

  • [Bio-Edu] AAV2の感染に関わるレセプターは何か? – ID18442 [2019/07/20]

    [Bio-Edu] AAV2の感染に関わるレセプターは何か? – ID18442 [2019/07/20]

    レセプターを考えるとき

    生体内の物資が、特定の組織に収束するのは、受容体(receptor)を介している。例えば、生体内でホルモンが分泌された時、血流に乗って全身に運ばれる。次に、必要な組織に到達するするのは、そのホルモンと結合親和性の有るreceptorが、その組織にあって、それに結合するためである。その結合の初期段階については、以下の様式を念頭に置いて置かなければならない。

    • 電荷的(正負のイオン的結合)
    • 構造的(パズルのマッチング)
    • 疎水的(疎水性が高いもの同士は収束する)

    AAV2のレセプター

    感染に関わるレセプターは、AAVの血清型によって異なるが、AAV2は、ヘパリンはよく知られており、そのHeparin分子について、AAV2の結合性を検討してしている2)、この文献によれば、Heparinの分子の長さによって親和性が異なるとのこと。

    個人的なコメントをすると、Heparinは、正電荷であるため、不電荷とはイオン的に結合が可能であり親和性を持つことが可能である。AAV2の表面に負電荷を持つ領域があるものと理解できるし、その分子の長さとその電荷の状態でAffinityは異なるものと思われる。

    編集履歴
    2019/07/20 はりきり(Mr)
    2020/05/31 文言整備、追加(レセプターを考えるとき、まとめ)
    Ref : 2) Characterization of Interactions between Heparin/Glycosaminoglycan and Adeno-associated Virus

    AAV2の必須な受容体の特定

    AAVは,ほとんどの細胞に高効率に感染することから,遺伝子治療用のベターに多用されている.参考文献3)によれば,感染細胞として、一倍体細胞を用いて遺伝子を1つずつノックアウトし,AAV2が感染するか否かを繰り返しAAV受容体を特定した後,ノックアウト動物で最終確認している.

    • Ig-likeドメイン (PKD: polycystin Kidony disease)の5回貫通する細胞外ドメインが受容体である
    • N末のIgドメインの2つがAAVと結合する
    • このIgドメインは,KIAA0319L遺伝子であり,小胞体輸送に関わる分子と結合し,ゴルジ体と細胞表面を行き来する.
    PKD : βシートが3枚と4枚で構成された構造

    基本的知識

    感染力(細胞内に入り込む能力)が有るrAAVを作る為には、天然AAVにコードされているrep/cap遺伝子が必要で有る。

    rep遺伝子

    Repタンパク質を発現する遺伝子.AAVの製造に必要である.

    cap遺伝子

    Capタンパク質を発現する遺伝子.AAV粒子を構成する3つのVP1, VP2及びVP3をコードしている.これらのカプシドタンパク質質により,正20面体の立体的構造を作り,その中にAAVの遺伝子が包含される.

    感染フロー

    StepProcessMemo
    1AAVの細胞への付着attachment, この付着する機序が2016年まで不明だった
      
    2エンドサイトーシスendocytosis
      
    3エンドソームによる輸送trafficking
      
    4エンドソーム又は,リソソームからの脱出escape
      
    5核への転移translocation
      
    6rep遺伝子の発現expression
      
    7ゲノム複製replication
      
    8cap遺伝子の発現,及び子孫ssDNAを含むAAV粒子を合成expression
      
    9子孫AAVの完成assembly
      
    10感染宿主細胞からの脱出release

    まとめ

    今回は、AAV2について、そのレセプターに関する参考文献を紹介した。

    良く知られたAAVの血清型としては、AAV1~AAV10程度が知られている。血清型によって、レセプターは異なるようである。なぜなら、感染ターゲットとなる細胞種が、血清型で異なることから、そのように推察されている。

    参考文献

    1)

    基礎知識 –
    Adeno-associated virus

    https://en.wikipedia.org/wiki/Adeno-associated_virus

    2)

    AAV2とHeparinの親和性について –
    Characterization of Interactions between Heparin/Glycosaminoglycan and Adeno-associated Virus – Biochemistry, 2013 –

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859860/#!po=2.00000

    3)

    AAV2のレセプターついて –
    An essential receptor for adeno-associated virus infection – Nature, 2016 –

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859860/#!po=2.00000

    編集履歴

    2019/07/20, Mr. Harikiri

  • [Bio-Edu] Bio Safety Levelとは – 遺伝子組換え実験と輸送など – カルタヘナ法に関わる – ID144 [2020/10/28]

    [Bio-Edu] Bio Safety Levelとは – 遺伝子組換え実験と輸送など – カルタヘナ法に関わる – ID144 [2020/10/28]

    Bio Safety Level

    Bio Safety Level (BSL)とは、細菌やウイルスの取り扱いについて、その病気を引き起こすリスクに応じてグループ(1~4)分けし、そのグループに応じた取り扱いを規定する。基本的には、グループ1~4はBSL1~4とそれぞれに対応する。Protection Level (P1~P4)という表現もあるが、基本的に同義である。

    輸送におけるカテゴリーとして、BSL-1, BSL-2は、カテゴリーBに分類、BSL-2, BSL-4は、カテゴリーAに分類される。

    1. カテゴリーB
      1. BSL-1 : AAV、ワクチンや動物に無害な病原体
        人の生活に密着している麹菌、乳酸菌、枯草菌(納豆菌)などは、高校での生物実験に使用できる。
      2. BSL-2 : はしかウイルス、インフルエンザウイルス
    2. カテゴリーA
      1. BSL-3 : 狂犬病ウイルス、結核菌、鳥インフルエンザウイルス、など
      2. BSL-4 : エボラウイルス、ラッサウイルス、天然痘ウイルス、など

    関係法令

    Bio Safety Levelは、以下の法律や指針を理解し対応する必要がある。

    1. 遺伝子組換え実験規程 (自分たちで策定)
    2. バイオセーフティ管理規程 (自分たちで策定)
      1. 病原体等取扱に関する安全管理などの要領
      2. 安全委員会などの構築 (実施者や実験の審議)
      3. 使用におけるサンプルの保管、廃棄とその方法、輸送などの記録と記録の保管
    3. 感染性物質の輸送規則に関するガイダンス
      1. カテゴリーA/B
      2. 国際的には3次包装、日本では、ゆうパックなどの輸送業社のカタログ参照
      3. サンプル情報としてのラベルが必要
      4. 常温輸送とドライアイス詰め輸送
    4. カルタヘナ法 : 微生物等の拡散防止措置に関する条約。批准国リスト
      1. 第一種使用
        1. 拡散防止措置を取らない
        2. 大臣承認
      2. 第二種使用
        1. 拡散防止措置を取る
        2. 大臣確認
    5. 感染症法 (感染症の予防及び感染症の患者に対する医療に関する法律、1998年10月2日公布)
      1. 特定病原体等(1種〜4種)
      2. それ以外
    6. 家畜伝染予防法、植物防疫法、外国為替及び外国貿易法
    7. 国立感染症研究所(NIID)病原体等安全管理規程
    8. NIH Guidelines for Research Involving Recombinant DNA Molecules
    9. WHO Laboratory Biosafety Manual
    10. 国民保護法施行令
    11. 植物防疫法
    12. 万国郵便条約
    13. 輸出貿易管理令
    14. 参考文献

    https://groups.oist.jp/sites/default/files/imce/u318/docs/biosafetymanual_ver100_j.pdf

    カルタヘナ条約カルタヘナ議定書(生物の多様性に関する条約のバイオセーフティに関するカルタヘナ議定書)
    (Cartagena Protocol on Biosafety)
    アメリカ、カナダ、オーストラリアは批准していない。台湾も批准していない状態と思われる(ナイトパール
    と呼ばれる光るメダカが作られ、日本に輸入され拡散している/環境省HPより)
    カルタヘナ法「遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律」(カルタヘナ法), H16/2

    カルタヘナ法に従う承認申請手続き

    日本におけるカルタヘナ法に基づく申請手続きを示す。

    1. 申請書ドラフト作成
    2. ドラフトのPMDAへの提出
    3. PMDA (以下、第一種で6ヶ月、第二種で3ヶ月)
      1. 正式版のPMDAへの提出(承認申請)
      2. PMDAの審査
      3. 大臣承認/確認
    4. 治験計画の提出
    5. 使用の開始

    感染性物質の輸送規則に関するガイダンス 2011-2012版 – WHO guidance和訳 – NIID 国立感染性研究所 –

    https://www.niid.go.jp/niid/images/biosafe/who/WHOguidance_transport11-12.pdf

    感染性物質の輸送規則に関するガイダンス 2013-2014版 – WHO guidance和訳 – NIID 国立感染性研究所 –

    https://www.niid.go.jp/niid/images/biosafe/who/WHOguidance_transport13-14.pdf#page=29

    バイオセーフティ管理 – カテゴリーB容器 – NIID 国立感染性研究所 –

    https://www.niid.go.jp/niid/ja/from-biosafe/947-youkisb.html

    バイオセーフティ管理 – カテゴリーA容器 – NIID 国立感染性研究所 –

    カテゴリーA容器は、リンク文書のp23~p26を参照

    https://www.niid.go.jp/niid/images/biosafe/who/WHOguidance_transport13-14.pdf#page=29

    カルタヘナ法ガイドブック – バイオインダストリー協会 –

    https://www.jba.or.jp/link_file/publication/H18_8_karutahena.pdf

    カルタヘナ法の「第一種使用規程承認申請書」及び「生物多様性影響評価書」に関する作成ガイダンスの策定 (2019) - AMED –

    遺伝子治療用のウイルス (アデノウイルス、ヘルペスウイルス、アデノ随伴ウイルス)を使ったベクターによる治療は、カルタヘナ法における第一種使用となる。今回、国立成育医療研究センター成育遺伝研究部HP内で公開された(「遺伝子細胞治療に関する規制及び学会等での資料/ AMED・遺伝子治療におけるカルタヘナ法の第一種使用規程の考え方に関する研究・成果物(2019.10.21)」 )。

    https://www.amed.go.jp/news/seika/kenkyu/20191127-02.html

    遺伝子治療用製品等及び感染症の予防を目的とする遺伝子組換え生ワクチンの治験実施までの留意事項 – JPMA –

    http://www.jpma.or.jp/information/bio/deliverables/2020/pdf/2020_notice_01.pdf

    遺伝子治療用製品等及び感染症の予防を目的とする遺伝子組換え生ワクチンの治験実施までの留意事項 (第2版) – JPMA –

    http://www.jpma.or.jp/information/bio/deliverables/2020/notice_01.html

    編集履歴

    2019/07/18 Mr.Harikiri
    2021/01/29 追記 (第一種使用に当たるウイルスベクターを使用した遺伝子治療に関するガイドライン)
  • [健康] BBBのタイトジャンクションは分子量450Da以上の分子は通過させない、核酸医薬はどうするか! – ID1015 [2019/07/16]

    [健康] BBBのタイトジャンクションは分子量450Da以上の分子は通過させない、核酸医薬はどうするか! – ID1015 [2019/07/16]

    脳血管関門はBBBとは

    脳血管関門はBBBと呼ばれ、脳微小血管を構成する内皮細胞は、密に寄り集まりタイトジャンクションを構成している。

    アンチ核酸など、その核酸の大きさが450Daより大き区なる場合、その分子はBBBを通過できず脳内の細胞には届かない。脳をターゲットにする場合、デリバリーできる技術が必要になる。

    タイトジャンクション

    タイトジャンクションは、2細胞からなるパイセルラータイトジャンクション(bicellular tight junction: bTj)と3細胞からなるトリセルラータイトバャンクション(tricellular tight junction: tTj)が存在する。

    bTj

    bTjは、claudin5, claudin3などから構成されている。claudin5を欠損させても800Da以上は通りにくい。

    tTj

    tTjは、angulin1やtricellulinから構成されている。これらにより中心管を構成している。

    E型ウェルシュ菌 (Clostridium perfringens)のイオウ毒素(iota-toxin; うさぎの腸炎の原因)は、angubidin1と相互作用する。他にも、ウェルシュ菌のC-CPE、エンテロトキシンのC末端領域と相互作用することを利用して、これらと拡散医薬の結合体を作り、BBBを超えらせる薬剤とする研究も行われている。

    編集履歴

    2019/07/16, Mr. Harikiri

  • [Bio-Lab] GE Healthcare PD-10 Column – カスタムな使い方として、中身を取り除いて、好みのレジンを詰める方法 – ID776 [2021/03/10]

    [Bio-Lab] GE Healthcare PD-10 Column – カスタムな使い方として、中身を取り除いて、好みのレジンを詰める方法 – ID776 [2021/03/10]

    PD-10カラム

    • 脱塩カラム
    • 平衡化バッファで平衡化
    • ~1mLをロードして、平衡化バッファで押し出す
    • 目的画分をフラクショネーションする

    目的外使用

    中身のレジンを除外して、別のレジンに積み替えて、簡易精製検討に汎用していました。

    • レジン充填量 : 0.5mL(カラム高5mm程度)
    • 自然落下の方法で使用します
    • 通常の指定される流速より5倍から10倍の高速で検討が可能です
      • ただし、結合キャパシティは、高流速であるため、絶対的なデータ取得ではなく、相対比較とての検討に向いています
      • すなわち、人的な能力を活かした高速検討です。
      • 得られたデータは、相対比較による最も良い条件を確認できますが、実際のスケールアップに際して、通常の条件で確認し、そのスケールでの最適化検討を実施する手順となります。
    • 上下のメッシュの高速簡便な再装着にKnow Howがあります^^)
      • 未使用のレジンは、粒子が小さいものが含まれているので、デカンテーションで除去しておきます
      • 遠心機と遠心チューブを使って、50%スラリーを作ります。遠心した時のレジンの体積に対して溶液を添加します
      • 懸濁したスラリーを、トップのメッシュを外したPD-10カラムに必要なカラムサイズの2倍のスラリー液をピペットで添加します。ピペット・チップは、先を挟みで切って流入口の径を大きくしておきます
      • 添加し終えたら、水でも良いので、追加して液量を増加させ、カラムの80%程度までかさ増しします。ボトムから液が滴下しているはずです
      • 液が無くなってしまわない内に、ボトムのキャップを取り付けます
      • トップのメッシュを取り付けます。カラムの上部に取り付け、直径の合うアダプターを差し込んで、ボトムに向かってある程度の速でで押しコンで行きます。最終目標は、レジンと上下のメッシュに隙間がない状態です。
      • ある程度の速度でアダプターを押し込んで行くと、メッシュに溜まった気泡が抜けさすことができます
      • * アダプター : マルエムチューブ(ポリステレンの使い捨ての試験管)のSS14などが使えます。試験管口をメッシュに当てると真っ直ぐに押し込めることができます
      • 以上の操作で、レジンのPD-10カラムへの充填が完了です

    編集履歴

    2019/07/15 Mr. HARIKIRI
    2021/03/10 追記 (自家充填の方法)
  • [Data Link] rAAV vectorの沈殿法を使った精製方法に関する文献のリンク – ID745

    [Data Link] rAAV vectorの沈殿法を使った精製方法に関する文献のリンク – ID745

    文献情報のみ

    A simplified purification method for AAV variant by polyethylene glycol aqueous two-phase partitioning Cell Pellet→Lysis→Nuclease→PEG8000-NaCl Precipitation. Replace from ultracentrifugation to precipitation procedure 10% PEG8000, 13.2% (HN4)2SO4
    Culture Supernatant + PEG solution (1/4 vol)→stir slowly 4℃, 1hr→4℃, 3hrs without string to allow full peciptation 40% PEG 8000, 2.4% NaCl, adjust pH7.4
    Adeno-associated Virus (AAV) AssemblyActivating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11make in 8% PEG 8000, 0.5 NaCl on ice for 3hrs. The pelet was suspet by 50 mM Tris-HCl (pH 8.5) and 2 mM MgCl
    2
    Helper-free Production of Laboratory Grade AAV and Purification by Iodixanol Density Gradient Centrifugation add 1:4 vol precipitation solution to supernatant from cell culture 40% PEG 8000, 2.5 M NaCl water

    関連記事

  • [用語] ribosome ; リボソーム – rRNAを鋳型にしてタンパク質を合成する細胞内機関 – ID18782 [2025/02/06]

    [用語] ribosome ; リボソーム – rRNAを鋳型にしてタンパク質を合成する細胞内機関 – ID18782 [2025/02/06]

    ribosome

    mRANから蛋白質を翻訳する細胞内機関。リボソームまたはリボゾーム(英: ribosome; ライボソーム)は、あらゆる生物の細胞内に存在する構造であり、粗面小胞体 (rER) に付着している膜結合リボソームと細胞質中に存在する遊離リボソームがある。wikipedia

    小胞体には,粗面小胞体(rough endoplasmic reticulum, RER)と割面小胞体(smooth endoplasmic reticulum, SER)の二種類がある.

    粗面小胞体

    粗面小胞体は、膜表面に多数のリボソームが付着しており、その表面が粗く見えることから「粗面」と呼ばれます

    タンパク質の合成: 粗面小胞体のリボソームは、新しいタンパク質を合成します。

    タンパク質の修飾と輸送: 合成されたタンパク質は粗面小胞体内で修飾され、小胞体内腔を通じてゴルジ体へ輸送されます。

    膜タンパク質の製造: 粗面小胞体は膜タンパク質の合成と組み立てにも関与します。

    滑面小胞体

    滑面小胞体は、表面にリボソームが付着していないため、滑らかな外観を持ちます。滑面小胞体は以下のような機能を持っています:

    解毒作用: 肝臓細胞においては、滑面小胞体は薬物や有害物質の解毒を行います。

    脂質合成: 滑面小胞体は、脂肪酸やステロイド、ホスホリピッドなどの脂質を合成します。

    カルシウムの貯蔵と放出: 筋肉細胞においては、カルシウムの貯蔵と放出を調節し、筋収縮を制御します。

    ページ: 1 2

  • [用語] mAb ; モノクローナル抗体 – ID18767

    [用語] mAb ; モノクローナル抗体 – ID18767

    mAb

    mAb: monoclonal Antibody; もっぱら、遺伝子組換え技術で作られたIgGを意味する, 分子量150kDa。長年の実績からノウハウの蓄積が多く、疾患ターゲットが異なっていても構築された製造プラットフォームの適用が容易にできることからバイオロジクス(遺伝子組換えタンパク質医薬品)では最も成功している。

    一部の大手バイオ企業では、nanobodyなど低分子化抗体で製品を提供している。

    編集履歴

    2020/07/11 Mr.HARIKIRI
    2021/01/08 追記 (最も成功しているバイオロジクスである)
  • [Bio-Edu] タンパク質(蛋白質)の精製 – 基礎編 – 不純物の定義、RefoldingからUF膜精製、タンパク質精製の定石まで – そしてタンパク質を知る – ID686 △[2021/06/03]

    [Bio-Edu] タンパク質(蛋白質)の精製 – 基礎編 – 不純物の定義、RefoldingからUF膜精製、タンパク質精製の定石まで – そしてタンパク質を知る – ID686 △[2021/06/03]

    蛋白質の精製 (基礎)

    蛋白質の精製 (purification of protein)とは、不純物と混在している目的蛋白質を一定の性質を利用して物理化学的に分別して、最終的に目的の蛋白質のみを取り出すことです。

    蛋白質の精製の具体例とて、水溶液の状態でタンパク質が溶けているとします。その溶液には、その目的タンパク質以外のタンパク質、脂質、糖質、原材料由来のDNAなどの不純物を含んでいるとします。

    そのタンパク質液の成分(塩濃度、pH、有機溶剤濃度)を調節することで、担体(resin)と呼ばれる固定物への脱着、沈殿精製による不純物との分離(上清/沈殿)、活性炭への不純物吸着など、を実施可能となり、タンパク質を精製することができます。

    しかし、用いる出発材料に含まれる目的タンパク質の含有率が精製効果に強く影響します。目的タンパク質の含有量が多いに越したことはありません。昔の出発材料では、目的タンパク質の含有量が、現在と比べて1桁、2桁低かったため、その精製は非常に大変でした。

    最近の抗体医薬では、培養液での生産性は、5g/Lなど、一昔前と比べて10倍~50倍以上となり、相対的に不純物との比較で含有率の改善がなされています。そのため、昔と比較して精製の難易度は非常に低くなりました。

    このように出発材料の品質が高まったことで、抗体医薬の精製は、プラットフォーム化が可能になりました。すなわち、単純な精製方法でも精製することができると言うことです。もしも、出発材料の品質が低い場合は、もっと複雑な精製工程を組まなければ精製できないことになります。

    • 出発材料に含まれる目的タンパク質は、主たる成分量でなければ、精製することは難しい
    • 相対的な不純物の混入量は、少ない程、精製はしやすくなる。

    不純物とは (Impurity)

    バイオ医薬品では、動物細胞や大腸菌など人ではない細胞に目的の蛋白質の遺伝子を導入して、これらを培養することで目的の蛋白質を分泌させるという培養工程がある。

    以下、不純物の発生源を示す。

    • 培養中に死んでしまう細胞の中味が培養液中に放出される
    • 培養に使用する培地に含む添加物
    • 目的蛋白質の分解物(類縁物質)

    菌や動物細胞は、それらが生きていくための蛋白質などを生産しつつ、目的の蛋白質も生産してくれる。目的の蛋白質でない物質を不純物と定義する。不純物の種類には、宿主細胞由来の蛋白質や脂質、DNAなどが含まれる。

    • 蛋白質 (細胞質由来)
    • 糖質 (細胞由来の糖、endotoxinも含む)
    • 脂質 (細胞膜)
    • 核酸 (細胞の核由来DNA、付随するヒストンなど)

    出発材料

    現在では、遺伝子組み換えによる生産が主流となっているが、遺伝子組換え技術が開発されるまでは、目的蛋白質を生産してくれる菌や動物細胞を偶然見つけたりして専用に選択していた。

    選択した細胞を培養し、ある程度の細胞濃度に増殖させた後、刺激剤を使ったりして目的の蛋白質を生産させていた。例えば、夢の薬と言われたインターフェロン (interferon)は、血液中の白血球を集めて培養し、刺激剤を添加するとInterferonを分泌した。株化細胞を使う場合は、Namalwa細胞ATCCというlymphoblastを使い、刺激剤は、仙台ウイルスを使用してInterferonを分泌されていた。もう、今から40年以上の昔の話である。

    • 組織由来株化細胞
    • ハイブリドーマ
    • 遺伝子組換え大腸菌
    • 遺伝子組換え動物細胞

    沈殿精製

    その頃の蛋白質精製には、いろんなバリエーションの沈殿化法が多用されていました。

    • アセトン沈殿 (結晶分画製剤)
      • 一部の血漿分画製剤の沈殿化に使用されていました
    • エタノール沈殿 (Cohnのエタノール分画が有名)
      • 血漿分画製剤の精製に使用されています。
      • 温度管理を厳密にしないとタンパク変性してしまいます
    • 硫安沈殿
      • 血清・血漿からIgGを粗精製に使用できます。ウサギに免疫し血清を取得してから、30%飽和濃度でIgGを沈殿化できます
    • PEG沈殿 (血漿分画製剤)
      • rAAV精製にも最近まで多用されていました。最近は、Thermo Fisher Scienceの抗AAV抗体レジンが、性能が良く代替的に使われるようになりました
    • グリシン塩酸沈殿(血漿分画製剤)
      • Fibrinogeの沈殿精製など、分子量の大きな凝固因子に使用されていました

    再構成(re-folding)

    大腸菌で産生させたタンパク質の場合、立体構造の再構成(re-folding)処理が殆どの場合必要です。一般的にタンパク質は、アミノ酸が数珠繋ぎになっている一本の糸のようなものです。その糸がどのように絡まるかが、そのタンパク質の機能が発揮される条件です。その正しい絡まり方を導くことが、Re-foldingと言います。正しい絡まり方ができなかった結末の場合、それは、mis-foldingと言います。mis-foldingしたタンパク質を一旦解いてfoldingし直すには、Re-foldingが必要です。

    詳しい手順は、以下のページをご参照ください。

    [Bio-FAQ] Refoldingとはなんですか? [2022/11/16]

    [Bio-FAQ] Refoldingとはなんですか? [2022/11/16] はコメントを受け付けていません

    [Bio-Edu] 組換え大腸菌で造らせたタンパク質のリフォールディングおよび、その後の精製手順 [2020/08/19]

    [Bio-Edu] 組換え大腸菌で造らせたタンパク質のリフォールディングおよび、その後の精製手順 [2020/08/19] はコメントを受け付けていません

    [Bio-Edu] 遺伝子組換え大腸菌からタンパク質を精製する製造フロー概略 – ID6624 [2020/01/09]

    [Bio-Edu] 遺伝子組換え大腸菌からタンパク質を精製する製造フロー概略 – ID6624 [2020/01/09] はコメントを受け付けていません

    吸着精製

    その他にも土や活性炭、イオン交換樹脂や多孔性のガラスビーズ(Controlled Pored Glass: CPG)などが蛋白質を吸着させる物質として使用されていた。これらの物質を吸着担体 (resin)と呼んだすりする。

    • 土(ミドライド)
    • 活性炭
    • イオン交換樹脂
    • 多孔性ガラスビーズ ( controlled pore glass; CPG )Merck

    これらのトラディショナルな技術は、現在の技術にシームレスに生かされている。バイオ医薬品のハーベストに使用されるディプスフィルター(Depth Filter)には、土や活性炭が膜の素材と共に練りこまれている製品がある。

    クロマト精製

    ゲル濾過精製

    もっぱら研究室では、分子量で分画するGel Filtration Chromatography (GPC)を汎用していた。3cmφ x 120cmのカラムにSephacryl S-200などのレジンを1日ががり充填、バッファーによる平衡化、夕方にサンプルをロードして翌日までオートサンプラーでフランジョンを分取していた。

    アフィニティクロマト

    特に純度を高めたい場合は、免疫用の抗原をなんとかして精製し、ウサギに免疫して抗体を取得して、抗体をクロマト担体にカップリングしてAffinity Columnを用意した。更に、今から40年以上も前でも、精製度の改善には定評があったのは、リン酸カルシウムの結晶であるハイドロキシアパタイトであった。

    • ゲル濾過(Gel Filtration Chromatograph; GFC), Size Exclusion Chromatography (SEC)などとも言う
    • 抗体カラム
    • ハイドロキシアパタイト (リン酸カルシウム)

    ハイドロキシアパタイトは、通常は針状に結晶化したものをカラムに充填して使っていた。その針状結晶はもろいため、使用している間に粉砕が進み、繰り返し使用は難しかった。しかし、オリンパスがCeramix化に成功(人工骨の研究)したことで、蛋白質の精製に用途を広げて現在に至っている。

    精製の戦略

    精製の戦略 ( Purification Strategy )を考えてみる。

    現在では、3種類の異なるモードのカラムクロマト精製で蛋白質の精製を行うのが主流である。

    基本的な戦略は、(1)「キャプチャリング」、(2)「陰イオン交換体」、(3)「陽イオン交換体」の3つの特性の異なる担体を使った手法を用いれば、殆どの蛋白質は精製が可能である。

    1. キャプチャリング
    2. 陰イオン交換体
    3. 陽イオン交換体

    抗体の場合のキャプチャリングであるAffinity精製は、Protein AやProtein Gなどを用いる。血液由来の凝固系因子のAffintiy精製では、Heparin担体が適用できることが多い。

    1. Protein Aカラム
    2. Heparinカラム
    3. Tag精製(His-tabを付加している場合)

    どうしてもAffinityが使えない場合は、出来るだけAffinity精製と同等な精製方法を探索しなければ、精製は困難になってくる。

    その探索に注力する必要も生じるが、吸着キャパシティから選択するならば、陽イオン/陰イオンを使った条件設定に注力することも必要である。

    タンパク質の精製では、同じモードの精製方法は重ねてはいけない。それぞれのモードで除去できる不純物の特性はある程度一定であるため、同じモードを重ねても効率が悪く回収率の低下を招くばかりである。

    • 同じ精製モードは重ねないこと
    • 精製モードは、まんべんなく組み合わせること
    • 最初の精製工程は、キャプチャリングであることを意識する
    • バッファー組成は、次の工程への繋がりがよいこと
    • UF/DFも多用しないこと

    更に、純度がどうしても上がらない場合、疎水モードやマルチモーダルの使用も考慮する。

    • 親和性担体 (Affinity resin)
    • 陰イオン交換体 (Anion Exchange Resin)
    • 陽イオン交換体 (Cation Exchange Resin)
    • 疎水担体 (Hydrophobic Resin)
      • Phenyl Resin: 低分子か疎水性が弱い蛋白質用
      • Butyl Resin: 疎水性が強すぎる蛋白質用
    • マルチモーダル (Multi Modal Resin)
      • ハイドロキシアパタイト (BIO-RAD): 陰陽の両方のモードをもち、少なくとも塩濃度、リン酸濃度、pHの3つのパラメータを駆使できる
      • capto Adhere (GE Healthcare): 陰イオンと疎水性のモード持つ
      • MMC (GE Healthcare)

    クロマト精製と組合わせ技

    沈殿化 (precipitation)

    概要

    沈殿による精製方法も使える状況は多い。例えば、沈殿化しやすい蛋白質の場合、それを活用するのが効率的な場合もある。人工的にデザインした、ある蛋白質の部分的なドメインを精製する場合、そのドメインは自然界には無い人工的な物質であることで、物理化学的性質が通常とは異なっていることが想定される。

    そのような物質であるケースでは、少しの食塩の添加により電気伝導度(conductivity)が上がっただけで、沈殿化する場合がある。これは、しめたもんだ。喜んで沈殿物を回収して、その純度を確認しよう。

    塩濃度を上げて沈殿化させる場合、pHは低い方が沈殿化しやすい。これも活用できる。

    • 塩の添加
      • NaClで沈殿化できればラッキー
      • その他、硫酸アンモニウム
    • pHを5以下に下げる
      • タンパク質溶液のpHを下げる場合、HClは希塩酸でも禁忌!。タンパク変性が強い
      • 酢酸(Acidic Acid)がマイルド。ただし、高濃度の酢酸は、逆に効果となる。

    物性を活用する

    沈殿法の原理について確認しておこう。厳密な定義はないものの、アミノ酸が数珠つなぎになったもので、数十個程度ではペプチド (Peptide)と呼ばれ、更に大きくなり分子量が5000 (5kDa)以上で蛋白質 (Protein)と呼ばれる。

    アミノ酸の種類により塩基性、酸性、疎水性の特性があり、これらの数珠つなぎとしての全体の特性が、ある蛋白質の総体的な物性を示すことになる。蛋白質は、絡まない紐のように存在しているのではなく、折れ曲がったり、巻いていたり、アミノ酸同士の物性に応じた相互的に引き合って入り反発しあっていたりと関係性が生じており、その状況は、存在している溶液中の塩濃度、pHや共存している溶剤の影響をうけて、その立体的な構造が形作られる。

    そのためアミノ酸の配列依存的に、その立体構造が確定するものの、周りの状況により影響をうけるため、一意的に決まるものではない。まさに、それこそがある蛋白質の物性ということである。セントラルドグマなどいいう言葉も聞いたことがあるが、僕は、そのような理論はよく知らない。

    沈殿法の種類

    • 塩析
      • 飽和劉安
      • NaCl
      • リン酸カリウム
      • グリシン塩析
    • 有機溶剤による沈殿
      • EtOH沈殿 : CORN Ethanol Fractionationが有名である。
      • アセトン沈殿
    • pHを下げる
      • pH6より低いpHに調整
      • 蛋白質によっては、中性pHで沈殿化するためpH8などのアルカリ性にする場合もある

    沈殿法(参考ページ)

    Post Views: 1,194 はじめに 無機塩の高濃度添加は、タンパク質を沈殿させる基本です。タンパク質溶液に対して塩を添加することで、タンパク質の疎水性という物理的性質の強度を溶液中で強めることができます。疎水性…
    Post Views: 299 はじめに タンパク質の精製とは、どのような作業をするのでしょうか? 精製とは目的物と異なる物質を取り除き、目的物質の割合を上げること、すなわち純度を高めることです。 ここでは、イオン交換体…
    Post Views: 648 はじめに Ribonuclease Aのアセントン沈殿の条件検討につい、学生さんが精力的に実施されている文献の紹介をして、その後、昔から知られている一般的な沈殿法について紹介してします。 …
    Post Views: 233 文献情報のみ A simplified purification method for AAV variant by polyethylene glycol aqueous two-pha…

    膜で不純物を吸着除去

    Depth filterという製品群がある。当然、日本製では製品はないが、外国製のPall MilliporeやSartorius Stedim, 3M, GE Helthcareなどのメーカーを当たれば良い製品が見つけられる。

    Depth filterの用途は一般的に、清澄ろ過であるが、膜に土や活性炭を練りこんでいる製品もあり、清澄化とともに不純物の吸着除去も同時に実現できる。抗体医薬の場合、陰イオン交換体のDepth filterでろ過することで、DNAなど負荷電の不純物が吸着し、抗体はパススルーする。これらの製品は、昔、僕らが鉱物由来であるミドライトなど、粘土を使ってInterferon (IFN)を精製していた時の技術の焼き直しである。トラディショナルな技術は、今も息づいている。

    濃縮とバッファ交換 (Concentration and Diafiltration)

    40年より前では、ホローファイバーで目的の蛋白質などを濃縮していた。この技術は還元濃縮みかんジュースなどで、今でも使われている。40年前に当時のメンブランメーカーであったミリポア社が限外濾過膜で平膜を開発し、画期的な構造の濃縮装置を開発した。ホローファイバーを使用して濃縮した場合、1週間かかるところを、この装置を使うと2時間で濃縮が完了してしまうほどの破壊的な技術であつた。そう、この装置をベリコン (Pellicon)という。

    短時間で濃縮が可能となると、これまでの濃縮に加え、溶液の組成置換も実施できるようになり、濃縮とバッファ置換は同義となった (Concentration and Diafiltration)。

    限外濾過膜の濃縮側にEndotoxinを残し、目的タンパク質をろ過

    実は、限外濾過処理を応用して、目的蛋白質と発熱製物質であるEndotoxinを分離分別可能である。Endotoxinは、ミセルを作っているので、見かけの分子量は100kDa以上になっているため、目的タンパク質が100kDa以下の場合、ろ過液に目的蛋白質を回収することができる。

    限外ろ過膜 (ultrafilter)

    • 限外ろ過膜には、平膜,ホローファイバーがある
    • 処理目的は、膜が持つ性能である分画分子量以下の低分子画分をろ過しすることで、循環システムから排除する。高分子画分は、残留させることで、循環システムに残留させる
    • ホローファイバーは、製造方法から簡単であったことから従来から使用されていたが、1980年代に膜メーカーのmillipore者が平膜の限外濾過膜を開発してベリコン膜と呼ばれ普及した。
    • 平膜では膜面と並行に目的溶液を流しながら(クロスフロー: cross flow),膜面に圧力を掛けることで、膜の分画分子量より大きい分子量画分を膜面を滑らせるとともに、小さい分子量画分をろ過する.ウイルス除去処理用フィルターもmilliporeが開発している。
    • ホローファイバーでは,平膜と同様の原理を使えるが中空糸構造であることから,そのオリフィス径(液が通る断面積)は小さいため,濃縮による不溶性異物により目詰まりしてろ過効率が低下しやすいが、バイオ医薬品の製造では必須でいるウイルス除去ファイルターはボローファイバーが使用されている。その場合、デッドエンド法が使われ、ファイバーの先端から末端に向けて処理液を送液する際、末端をデッドエンドにして圧力をかけることでファイバーの外側に濾過液が滲み出る原理の方法である。細胞を含む培養液の成長ろ過にホローファイバーが使用される場合は、クロスフロー法が使用される。
    平膜とホローファイバーの比較
    比較follow fibercross flow
    流路絶対的に狭い。ファイバーを増やしても内径は狭いまま理論的には膜幅と膜と膜との間隔だけ面積に相当する広い流路
    循環流速早くできない早くできる
    処理速度遅い早い
    適用低い粘度の溶液処理。培養液の清澄ろ過低濃度から高濃度タンパク質のろ過・濃縮
    製品Planova 20N (ASAHI-KASEI)Pellicon (Pall-Millipore), (Sartorius), (Novasep)

    参考文献

    minimate TFF capsule

    タンパク質の性質を知ること

    PDB

    結晶解析により立体構造がわかっているタンパク質の場合、のプロテイン データペースに登録されています。

    立体構造から、そのタンパク質の物性イメージをつかみます。

    • FabとIL-6のComplex : PDB
    • Fab (Rontlizumab) – Interferon-a2 : PDB
    • Infliximab (Fab) : PDB
    • AAV 5 : PDB

    Helical Wheels

    アミノ酸が連なったものがペプチドであり、タンパク質です。その構造は、αヘリックス、ベータシート、ランダムシートに分けられます。そのアミノ酸の結合具合をαヘリックスの配置に模倣して、そのドメインがどのようなアミノ酸群、すなわち、疎水性や極性を持っているのかを、単位として理論的に簡略化する図が、Helical Wheelsです。

    どの当たるのアミノ酸配列が、

    Analysis of individual sequences

    http://www.bioinfo.org.cn/lectures/index-7.html

    Helical Wheel

    https://en.wikipedia.org/wiki/Helical_wheel

    解析ソフトの解説も参考になります。

    4.14.12 Helical Wheel – HULINKS –

    https://www.hulinks.co.jp/support/gi/tutorial/m041412.html

    まとめ

    この投稿では、タンパク質についてどのような精製があるかを解説した。実際に精製しようとすると、その具現化がまた骨の折れる作業となる。

    編集履歴

    2019/07/11 はりきり(Mr)
    2020/05/09 文言整備
    2020/06/13 追記(平膜とボローファイバーの比較)
    2020/07/07 Update
    2021/06/03,追記(Helical Wheel)
  • [用語] マンノシル化; Mannosylation – ID18761

    [用語] マンノシル化; Mannosylation – ID18761

    マンノシル化

    マンノシル化: Mannosylation, (1) C-マンノシル化、(2)O-マンノシル化。小胞体(Endoplasmic Reticulum; ER)で修飾される

    編集履歴

    2020/07/11 Mr.HARIKIRI
  • [用語] フコース; fucose – ID18759

    [用語] フコース; fucose – ID18759

    fucose

    fucose: デオキシ糖の1種である6-デオキシ-ガラスクトース, C1H12O5, 分子量164.16

    編集履歴

    2020/07/11 Mr.HARIKIRI