ブログ

  • [Bio-Lab] Slide-A-Lyzer™ Dialysis Cassette – タンパク質サンプルのバッファー置換 – 昔は、透析チューブを使っていたが今はバカチョン – ID8580 [2020/09/16]

    [Bio-Lab] Slide-A-Lyzer™ Dialysis Cassette – タンパク質サンプルのバッファー置換 – 昔は、透析チューブを使っていたが今はバカチョン – ID8580 [2020/09/16]

    Slide-A-Lyzer

    ラボスケール用の透析用膜キットです。昔は、ロールの透析チューブを使っていました。必要な長さにハサミで切り、熱湯で保護剤のグリセリンを洗い流して、精製水で洗って、片方を結び閉じます。その後、サンプルをロートで、透析チューブに流し入れます。最後に、少し上に空気を入れた状態で、上を結び閉じます。その後、透析バッファーの入ったビーカーに投入して撹拌します。

    この準備を端折りたいのであれば、この「Slide-A-Lyzer」を使うことです。

    透析膜・カセットシステムの用途

    現在では、Slide-A-Lyzerが簡単な操作で透析が可能なため、良く使われます。

    • 精製タンパク質の精製途中で、クロマト精製をする前の準備としてバッファー組成を整えるとき
    • 最終的に得られた精製サンプルを、動物試験や細胞を使ったアッセイに使用できるように、生体に優しいバッファー組成に整えるとき

    昔は透析チューブを使っていた

    旧研究者は、ロールになった透析膜を必要な長さにはさみで切って、煮沸して保存剤であるグリセロールを取り除くと共に、柔らかくした後、精製水でよくもく洗いして透析チューブにして使用していました。透析チューブは、まず、一方の端を一回結びします。もう一方から、ロートを使ってサンプルを流し込みます。その後、その一方の端を少し空気を入れて結び、透析チューブとします。

    希釈率

    バッファー交換とは、1,000倍希釈を目標とします。

    • 1,000倍以上を目指す
    • サンプル量と透析バッファーの液量をもとに計算する

    操作方法

    1. サンプルをカセットに注射針と注射筒を使って注入
    2. 希釈率から必要な液量の透析バッファーを準備する
    3. 透析バッファーにカセットを投入して、スターラーバーにより撹拌する
    4. 本来は、カセット内の液と透析バッファーをサンプリングして電気伝導度を測定して、透析操作の完了時期を確認するのが良いが、一般的には、1回の透析バッファーでの操作の場合、一晩を目安にする
    5. 2回目の新しい透析バッファーでの操作を実施する場合は、1回目を5時間程度、2回目を一晩とする
    6. 透析操作が完了したカセットを取り出し、注射器でサンプルを取り出す

    メリット・デメリット

    ラボでは、(1)透析チューブやSlide-A-Lyzerを使ってバッファー交換することが多いですが、量が多かったり、タンパク質濃度を高めたかったりする場合、(2)クロスフローろ過膜(TFF)システムを使います。以下、比較してみましょう。

    透析チューブ / Side-A-LyzerTFF System
    ラボ用として簡単に透析が実施できるシステム構築が必要
    元のサンプルの液量より増える濃縮が可能
    透析用バッファーの量が多い透析用バッファーの量は、理論上、サンプルの8倍量で1,000倍希釈を達成できる
    膜の内外の透過が平衡状態となったときが、最終的な希釈率となるが、その平衡状態を知る方法は、サンプリングして、電動度などを測定するしかないろ過された液量から、簡単に希釈率を計算できる

    Slide-A-Lyzer™ Dialysis Cassette

    https://www.thermofisher.com/jp/ja/home/life-science/protein-biology/protein-purification-isolation/protein-dialysis-desalting-concentration/dialysis-products/slide-a-lyzer-dialysis-cassettes.html

    編集履歴

    2020/02/04 HARIKIRI(MR)
    2021/03/27 TFFシステムとの比較
  • [Data Link] FDAの遺伝子治療薬への強いサポートの表明  – ID8513 [2020/01/28]

    [Data Link] FDAの遺伝子治療薬への強いサポートの表明 – ID8513 [2020/01/28]

    冒頭声明の和訳

    FDAは、アメリカ人や世界中の人々のために新しい医療製品を開発するイノベーターを支援するための努力を続けているため、これは遺伝子治療の分野で極めて重要な時期です。 現在までに、FDAは、患者の細胞に新しい遺伝物質を挿入する4つの遺伝子治療製品を承認しています。 この分野で進行中の臨床研究のための900以上の治験中の新薬(IND)申請によって証明されるように、当局は今後数年間でさらに多くの承認を期待しています。 FDAは、これにより患者と医療提供者に治療の選択肢が増えると信じています。

    その精神で、本日、FDAは、遺伝子治療の製造と製品の臨床開発に関する6つの最終ガイダンスと、希少疾病用医薬品規制に基づく遺伝子治療製品の同一性の解釈というガイダンス草案という、いくつかの重要なポリシーのリリースを発表しました。(by Google Translation)

    FDA Continues Strong Support of Innovation in Development of Gene Therapy Products, 2020/01/28

    https://www.fda.gov/news-events/press-announcements/fda-continues-strong-support-innovation-development-gene-therapy-products
  • [Link] 遺伝子治療のFDAガイダンス – ID8495 [2020/02/03]

    [Link] 遺伝子治療のFDAガイダンス – ID8495 [2020/02/03]

    遺伝子治療のFDAガイダンス

    希少疾患における治療薬の同一性の解釈

    同一である場合、臨床的に優位であることを実証できれば、「希少疾患治療薬指定」を助けることができ、最大、7年間の販売独占期間を得ることができる。

    Cellular & Gene Therapy Guidances – FDA –

    https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances
  • [Bio-Edu] 治験実施までの留意事項 – 製薬協 – ID8497 [2020/02/03]

    [Bio-Edu] 治験実施までの留意事項 – 製薬協 – ID8497 [2020/02/03]

    はじめに

    遺伝子治療用製品及び感染症の予防を目的とする遺伝子組換え生ワクチンの開発は、以下のガイドライ等に従い開発される。

    • 医薬 品医療機器法
    • カルタヘナ法 (アメリカは批准していないので、不要であるが、類似するガイドラインが存在する)
    • ICH ガイドライン
    • 遺伝子治療用医薬品の品質及び安全性の確保に関する指針

    本文書には、関連する留意事項がまとめられている。

    遺伝子治療用製品等及び感染症の予防を目的とする遺伝子組換え生ワクチンの治験実施までの留意事項(第1版)

    http://www.jpma.or.jp/information/vio/deliverables/2020/notice_01.html
  • [Bio-rAAV] AAVカプシド蛋白質VP1のpH依存的な構造変化 – エンドソーム脱出につながっているのか – ID8476 [2020/02/02]

    [Bio-rAAV] AAVカプシド蛋白質VP1のpH依存的な構造変化 – エンドソーム脱出につながっているのか – ID8476 [2020/02/02]

    VP1の機能

    カプシド蛋白質VP1の領域のうち、pH酸性(4-6)により内部にある部分が表出する、とのこと。

    要約 (Goolge翻訳より)

    感染に不可欠なカプシドの領域を特定するために、構造解析(X線結晶構造解析と低温EM)と変異原性および生化学的解析を組み合わせました。 これは、新しいベクター生産戦略の開発と標的ベクターの約束を可能にする重要な情報につながりました。 X線結晶構造解析を使用して、キャプシドが酸性pHにさらされたときに構造変化を受けるAAVカプシドの領域を特定し、円二色性(CD)を使用して、マイナーカプシドウイルスタンパク質VP1(VP1u)のユニークな領域を示しました。

    ホスホリパーゼA2(PLA2)機能を含む、同様の条件下で展開されます。

    これらのpH(pH 4〜6)は、生産的なAAV感染に不可欠であることが示されており、キャプシドが細胞侵入および輸送中にエンドソーム区画で遭遇するものに匹敵します。

    私たちの研究は、2つの予想外の新しい発見をもたらしました。

    1つ目は、カプシドが未知の酵素活性を持っていることです。つまり、カプシドと外部基質の自己分解的切断を触媒できるpH感受性プロテアーゼです。 プロテアーゼ活性のメカニズムとその機能の両方は不明であり、他のウイルスがコードするプロテアーゼと比較してユニークであるように見えます。

    2つ目は、キャプシドのpH感受性領域の変異は、ウイルスDNAが核でコーティング解除された後でも遺伝子発現に大きな影響を与えることであり、核でのDNAコーティング解除後にキャプシドが遺伝子発現に役割を果たすことを示唆しています。

    さらに、CDの研究は、通常キャプシド内部に埋もれているが、エンドソームの酸性コンパートメントを介して人身売買中に押し出されるVP1uの外部化のメカニズムを示唆しました。 この提案では、(1)プロテアーゼの活性部位とその切断ターゲットを特定することにより、(2)核の脱コーティング後の遺伝子発現におけるpH感受性キャプシド領域の役割を決定することにより、これらの新しい発見を探索したいと考えています。 (3)カプシド内の他の酵素活性であるVP1u関連PLA2に対するpHと陽イオンの影響を調べる。

    エンドサイトーシスで細胞内に入ったAAVは、エンドソーム内で、中性pHからpH5へpHが低下して行くなか、VP1の構造変化が起きること、さらに酵素活性を持っていること。このことは、エンドソームからの脱出の可能性を示唆しています。

    The role of pH and protease activity in AAV viral transduction 

    http://grantome.com/grant/NIH/R01-GM109524-01

    エンドソーム脱出モデル

    ドラッグでリバーリーとしてのナノキャリアが、エンドドームから脱出するモデルなどをまとめた論文

    Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors, 2019

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639780/#!po=10.2941
  • [Bio-AAV] AAVカプシド蛋白質のpH依存的な分解性について-論文紹介 (2012) – ID8474 [2020/02/02]

    [Bio-AAV] AAVカプシド蛋白質のpH依存的な分解性について-論文紹介 (2012) – ID8474 [2020/02/02]

    要約 (Goolge翻訳より)

    高度に精製されたアデノ随伴ウイルス(AAV)キャプシドのpH5.5でのインキュベーション試験では、いくつかのアミノ酸位置でのキャプシドタンパク質の有意な自己切断を誘導した。

    pH 7.5では自己切断は見られなかった。 他のAAV血清型の検査により、少なくとも2つの異なるpH誘導性切断パターンが示され、異なる血清型が代替プロテアーゼ切断部位を進化させたことを示唆している。

    対照的に、AAV血清型と外部プロテアーゼ基質とのインキュベーションは、精製されたAAVキャプシド調製物が中性pHで強いプロテアーゼ活性を有するが、キャプシドタンパク質自己切断で見られるものとは反対にpH 5.5ではそうではないことを示した。

    いくつかの証拠は、プロテアーゼ活性がAAVキャプシドに固有のものであり、タンパク質の混入によるものではないことを示唆しています。

    対照ウイルス調製物は外部基質に対してプロテアーゼ活性を示さず、AAVウイルス調製物の濾液もキャプシドを汚染するプロテアーゼ活性を示さなかった。

    さらに、N末端エドマンシーケンスは、AAV1とAAV9のユニークな自己切断部位を識別し、これらの部位に隣接するアミノ酸の突然変異誘発は切断を排除しました。

    最後に、保存されたpH感受性構造領域にあるAAV2(E563A)のアミノ酸の変異は、外部基質上のプロテアーゼ活性を除去しましたが、自己切断には影響を与えなかったようだ。

    まとめると、我々のデータは、AAVキャプシドがpH誘導に敏感な1つ以上のプロテアーゼ活性部位を持っていることを示唆した。

    さらに、後期エンドソームに見られるpHに当たる酸性pHは、自己分解性プロテアーゼ活性を誘導するカプシドの構造変化を誘導すると思われる。 pH依存性プロテアーゼ活性は、ウイルス感染に役割を果たしている可能性がある。

    Evidence for pH-Dependent Protease Activity in the Adeno-Associated Virus Capsid (2012)

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486322/
  • [Bio-Analysis] Comparability Test – バイオ医薬品における同等性/同質性 – ID8641 [2024/06/1]

    [Bio-Analysis] Comparability Test – バイオ医薬品における同等性/同質性 – ID8641 [2024/06/1]

    はじめに

    Release Testとは、医薬品の製造が正常に実施され、それによって製造された原薬または医薬品について、予め定めた規格試験に合致することを確認する試験であり、確認されることで問題の無い品質として出荷できるお墨付きが与えられる試験である。

    MR.HARIKIRIの理解で表現すると、「Comparability Testとは、一般的に原薬のRelease Testを項目を網羅している。すなわち、物性、不純物など多数の項目で構成される品質試験であり、製造法変更などによる同等性を確認する試験群の塊」である。規格試験よりも、更に詳細な物性、例えば「糖鎖分析」、「フリーシステイン数」、「in vitro/in vivoなどによる活性評価」などの試験が追加される。

    開発している医薬品の開発ステージが進むほど、高い同等性が求めらめることは当然であり、臨床試験でのPK/PDも必要となる場合もある。

    CoPilotにきいてみた!

    Copilotの答え

    バイオロジクス医薬品は、先行バイオ医薬品と同等性または同質性を持つ医薬品です。ここで、同等性/同質性 (comparability)とは、以下のように理解されます。

    バイオロジクス医薬品は、化学合成ではなく細胞や細菌が作り出すため、分子量が大きく構造が複雑です。そのため、同等性/同質性を確保するために厳格な評価が行われます。日本では、バイオ後続品の承認審査が進められており、多くのバイオシミラーが既に承認されています1.

    このようなバイオシミラーは、先行バイオ医薬品と同等な品質を持ちつつ、治療効果を提供する重要な選択肢となっています。

    詳細情報

    1.pmda.go.jp

    2.nichiiko.co.jp

    3.fujifilmkyowakirin-biologics.com

    4.ge-academy.org

    以上がCoPilotの答えた同等性/同質性の解釈 (2024/06/21現在).

    ICHガイドライ(Q5E)

    目的

    • バイオロジクスにおける同等性/同質性評価の考え方を示すこと
    • 製造工程の変更により有害な影響を与えないことを立証すること
    • 品質・安全性・有効性に関わること

    背景

    バイオロジクスは、低分子ドラッグと比較して細胞などの生命原理を利用した製造原理であり、完全に理解されているものではない。また、Upstreamの培養、Downstreamの精製工程も複雑であるため、製造方法は、開発当初から完全な条件設定が完了することはできない。そこで、段階的な最適化が進められるのが通常である。製造承認取得後も、これら製造工程の変更が行われることも多いが、その変更される主な理由は、主に経済性であり以下の通りである。

    製造工程の変更の理由

    • 純度アップや収量改善
    • 製造規模の拡大
    • 製品の安定性向上
    • 規制の変更に対する対応

    比較

    Potential impact (潜在的影響)としては、不純物が増加したり、目的物質の物性変化、最悪の場合は活性の低下など品質への影響が考えられる。品質以外の結果として、毒性が顕在化することもあり得る。

    Potential impactを検出するために、Release Test (出荷試験)にあげられる試験項目の実施の他に、extended Characterization Test (追加的な物性試験)が、追加される。

    また、品質における変化があれば、Stability studies data (保存安定性)に影響することも考えられ、悪い影響としては、安定性が維持できず保存期間の短縮化という悪影響も起こり得る。

    • Potential impact (品質、毒性)
    • Release and extended Characterization Test (特製解析)
    • Stability studies data (保存安定性)
    表1. 変更箇所と内容、Product Quality Attributesにおける潜在的インパクト、その測定方法と実施
    変更箇所考えられるインパクト原因試験方法
    培養方法、条件細胞の生理学的(physiology)な影響、プロダクトの変化、C末端Lysの脱落(clipping)、その他翻訳後修飾(post-translational modifications;PTMs)細胞の生理的活動の変化による生体化学反応の変化N型糖鎖分析(glycoforms)、IEF, SDS-PAGE, SEC, AUC, ESI-MS, Freeチオール、ペプチドマッピング
    精製方法、条件重合体(aggregates), 分解物(fragments), 2本作が1本作ずつに乖離(dissociation)など, variants, 不純物(Impurity level)成分の変化による相対的なインタラクションの変化SEC, AUC, SDS-PAGE, IEX, ESI-MS, oligosaccharide
    UF/DF, buffer, timeaggregates, fragments, dissociation, conformation, activity濃度の変化やシェアストレス、Donnan-Effectによるバッファ組成の変化CD, peptic mapping(MS/MS), Cell Based Assay

    Comparability Protocols for Human Drugs and Biologics: Chemistry, Manufacturing, and Controls Information, Guidance for Industry, DRAFT GUIDANCE (2016), 24 page/all

    https://www.fda.gov/files/drugs/published/Comparability-Protocols-for-Human-Drugs-and-Biologics–Chemistry–Manufacturing–and-Controls-Information-Guidance-for-Industry.pdf

    ICH Topic Q5E

    Comparability of Biotechnological/Biological Products, Step 5 (2005), CPMP/ICH/5721/03

    https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-5-e-comparability-biotechnological/biological-products-step-5_en.pdf

    ICH Topic Q5Eの解説 – Brigitte Brake BfArM Germany – @2011 ICH, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use

    https://admin.ich.org/sites/default/files/inline-files/SESSION_II_ICH_Q5E_Comparability.pdf

    pmdaサイトにあるQ5Eの文書「生物薬品(バイオテクノロジー応用医薬品/生物起源由来医薬品)の製造工程の変更にともうなう同等性/同室性評価について」

    https://www.pmda.go.jp/files/000156276.pdf

    編集履歴

    2020/02/02, Mr. HARIKIRI
    2021/04/17 追記(表1に項目「原因」を追加)
    2021/08/16,文言整備
    2021/08/27,追記(開発ステージ関連の記載)
    2024/06/21,追記(CoPilotの解釈)
  • [Bio-Process] 原薬の超低温保管 ID9640 [2020/02/02]

    [Bio-Process] 原薬の超低温保管 ID9640 [2020/02/02]

    原薬の保管

    バイオロジクス精製原薬を長期保存するには、除菌ろ過フィルターでろ過、ガス透過性が低いHDPE製のプラスチックボトルに小分け分注(aliquot)し、長期保存も考慮して超低温冷凍庫にて凍結保管する。

    ロジスティック戦略

    従来のバイオロジクスとシンモダリティのAAV Vectorについて個別に解説する。

    • 従来のバイオロジクス
    • AAV Vector

    従来のバイオロジクスのケース

    従来のバイオロジクスである抗体医薬などでは、超低温冷凍庫による保管の期間として3年程度を設定される。

    保管されている原薬は、その期間内で製剤化され製品化される。製品化された製剤は、病院での使用前保管を前提に、一般的に液状での保管となり、3年程度の期間の保証がされる。

    AAV Vectorのケース (私案)

    新モダリティのAAV Vectorに関しては、市販されている製品が一桁と少ないため、そのベストプラクティスのロジスティック戦略を実績を含め示すことは難しい。

    ここでは、私が考えるロジスティック戦略について思案を示す。

    前提

    • 遺伝子治療は、即時的な治療が必要な疾患でない場合がほとんどであること
    • 投与する薬剤の実行ボリュームは、従来のバイオロジクスと比較して少ないこと
    • 患者数が少ないこと
    • 1回に原薬製造で、数百人の治療に使用可能な原薬が取得可能であること

    AAV Vectorのロジスティック戦略

    • AAV Vectorの製造で得られる原薬と製剤はサイト移動がない一貫製造とする
    • 原薬の保存期間は最長でも半年とすることで、開発期間の効率化を図る
    • 製剤の保存期間を数十年、少なくとも10年を目標にデータを取得し、AAV Vectorの製造数を最大限抑える

    その結果、達成できること

    • 一回製造すれば、数十年少なくとも10年は、得られた原薬を廃棄することなく有効に治療へ供給できる
    • 遺伝子治療は、その患者数が少なく必要な製品数は多くを必要としない。製造メーカーの損益分岐点を低くすることができる

    GORE(R) STA-PURE(TM) Flexible Freeze Container

    https://www.gore.com/products/gore-sta-pure-flexible-freeze-container

    関連記事

  • [Bio-Process] Sterile Filtration – ID8462

    [Bio-Process] Sterile Filtration – ID8462

    Bio-Equipment

    • 精製ステップ毎のbioburden管理
    • 原薬の除菌ろ過

    Sartorius Stedium

    Pioneering Sterile Filtration