Post Views: 238
Q : タンパク質の精製を始める前に、そのタンパク質についてよく考える必要があるのですか?
A : まず、精製品として取得したいタンパク質を精製するには、そのタンパク質自体の情報を理解する必要があります。分子量、アミノ酸配列、精製機材としてのレジンとして特異的なレジンがあるか、そして、3D立体構造を知ることは、精製に関わる挙動をイマジネーションすることができます。
- 分子量
- アミノ酸配列情報
- 特異的な精製は可能か
- 3D立体構造
分子量はどれくらいか
精製しようとしているタンパク質の物性について知ることから始めます。
100kDaを超えると大きい分子と認識します。もしもRefoldingが必要な場合、このような高分子でのRefoldingは期待薄です。できたとしても、その歩留まりは非常に低いはずです。
Refoldingが可能なタンパク質の分子量は、一般的に30kDa以下です。それ以上になると、分子量の増加とともにRefolding効率が低下してきます。
アミノ酸配列情報
等電点はどれくらいか
イオン交換体の精製を考える場合に、その等電点を知ることは、陰イオン交換体を使用できるのか、陽イオン交換体を使用できるのか、まずは、大雑把に判断するために必要な情報です。
ウイルスや核酸は、負電荷が強いので、陰イオン交換体による吸着/溶出法が使用できます。IgGの場合、そのpIは、中性から塩基性であることが多いので、その場合には、その抗体のpIを超えないpHのバッファー組成で、陰イオン交換クロマトグラフィを実施できます。IgGはパススルーしますが、その他、pIが低い不純物質は、吸着するので精製されるわけです。
疎水性はどれくらいか
分子量が大きくなるにつれて、疎水性は一般的に高くなります。大きな分子であれば疏水クロマトが使用できるでしょう。IgGの分子量は、150kDaなので、疎水クロマトが使用できます。
疎水性が強ければ、塩析による沈殿化も容易です。容易ということは、沈殿化によるロスに注意を払う必要もあるということです。
ただ、疎水クロマトでは、疎水レジンであっても吸着容量がイオン交換クロマトグラフィと比較して低くなるし、高分子であるほど吸着容量は低下することを考慮する必要があります。
特異的な精製は使用可能か
アフィニティ精製
抗体の精製のようにProtein Aレジンによる精製が可能なら使用すれば、初期精製の苦労を回避できます。文明の力は使いましょう。そのために、試薬メーカーが開発してくれています。
AAVのアフィニティ・レジンも開発されています。使用しない手はないでしょう。
血液凝固系のタンパク質は、もっぱらヘパリン親和性を持っています。ヘパリン・レジンを使えるかも知れません。
精製タグによる精製
ラボでの精製をしやすくするために、N末またはC末にHistidine x 6を付加して、Niカラムで精製が可能にデザインすることがあります。Imidazoleの濃度で溶出できますが、おそらくHistidineでも溶出は可能なはずです。一般的には、Histidineで溶出することはないようです。私は、見たことがありません。
最適なImidazole濃度は、必要十分な濃度を知ることが重要です。薄すぎると回収率が低下し、高すぎると不純物が多くなりがちです。ただし、この工程は、キャプチャリングなので、後の精製工程の能力が高ければ、Imidazole濃度については、それほど厳密な設定は必要ないでしょう。
編集履歴
2020/11/22 Harikiri(Mr) 2021/05/02